25 research outputs found

    Validation of automated scoring for learning progression-aligned Next Generation Science Standards performance assessments

    Get PDF
    IntroductionThe Framework for K-12 Science Education promotes supporting the development of knowledge application skills along previously validated learning progressions (LPs). Effective assessment of knowledge application requires LP-aligned constructed-response (CR) assessments. But these assessments are time-consuming and expensive to score and provide feedback for. As part of artificial intelligence, machine learning (ML) presents an invaluable tool for conducting validation studies and providing immediate feedback. To fully evaluate the validity of machine-based scores, it is important to investigate human-machine score consistency beyond observed scores. Importantly, no formal studies have explored the nature of disagreements between human and machine-assigned scores as related to LP levels.MethodsWe used quantitative and qualitative approaches to investigate the nature of disagreements among human and scores generated by two approaches to machine learning using a previously validated assessment instrument aligned to LP for scientific argumentation.ResultsWe applied quantitative approaches, including agreement measures, confirmatory factor analysis, and generalizability studies, to identify items that represent threats to validity for different machine scoring approaches. This analysis allowed us to determine specific elements of argumentation practice at each level of the LP that are associated with a higher percentage of misscores by each of the scoring approaches. We further used qualitative analysis of the items identified by quantitative methods to examine the consistency between the misscores, the scoring rubrics, and student responses. We found that rubrics that require interpretation by human coders and items which target more sophisticated argumentation practice present the greatest threats to the validity of machine scores.DiscussionWe use this information to construct a fine-grained validity argument for machine scores, which is an important piece because it provides insights for improving the design of LP-aligned assessments and artificial intelligence-enabled scoring of those assessments

    Introductory biology undergraduate students\u27 mixed ideas about genetic information flow

    Get PDF
    The core concept of genetic information flow was identified in recent calls to improve undergraduate biology education. Previous work shows that students have difficulty differentiating between the three processes of the Central Dogma (CD; replication, transcription, and translation). We built upon this work by developing and applying an analytic coding rubric to 1050 student written responses to a three‐question item about the CD. Each response was previously coded only for correctness using a holistic rubric. Our rubric captures subtleties of student conceptual understanding of each process that previous work has not yet captured at a large scale. Regardless of holistic correctness scores, student responses included five or six distinct ideas. By analyzing common co‐occurring rubric categories in student responses, we found a common pair representing two normative ideas about the molecules produced by each CD process. By applying analytic coding to student responses preinstruction and postinstruction, we found student thinking about the processes involved was most prone to change. The combined strengths of analytic and holistic rubrics allow us to reveal mixed ideas about the CD processes and provide a detailed picture of which conceptual ideas students draw upon when explaining each CD process

    Table_1_Validation of automated scoring for learning progression-aligned Next Generation Science Standards performance assessments.DOCX

    No full text
    IntroductionThe Framework for K-12 Science Education promotes supporting the development of knowledge application skills along previously validated learning progressions (LPs). Effective assessment of knowledge application requires LP-aligned constructed-response (CR) assessments. But these assessments are time-consuming and expensive to score and provide feedback for. As part of artificial intelligence, machine learning (ML) presents an invaluable tool for conducting validation studies and providing immediate feedback. To fully evaluate the validity of machine-based scores, it is important to investigate human-machine score consistency beyond observed scores. Importantly, no formal studies have explored the nature of disagreements between human and machine-assigned scores as related to LP levels.MethodsWe used quantitative and qualitative approaches to investigate the nature of disagreements among human and scores generated by two approaches to machine learning using a previously validated assessment instrument aligned to LP for scientific argumentation.ResultsWe applied quantitative approaches, including agreement measures, confirmatory factor analysis, and generalizability studies, to identify items that represent threats to validity for different machine scoring approaches. This analysis allowed us to determine specific elements of argumentation practice at each level of the LP that are associated with a higher percentage of misscores by each of the scoring approaches. We further used qualitative analysis of the items identified by quantitative methods to examine the consistency between the misscores, the scoring rubrics, and student responses. We found that rubrics that require interpretation by human coders and items which target more sophisticated argumentation practice present the greatest threats to the validity of machine scores.DiscussionWe use this information to construct a fine-grained validity argument for machine scores, which is an important piece because it provides insights for improving the design of LP-aligned assessments and artificial intelligence-enabled scoring of those assessments.</p
    corecore