690 research outputs found

    Biomolecular imaging and electronic damage using X-ray free-electron lasers

    Full text link
    Proposals to determine biomolecular structures from diffraction experiments using femtosecond X-ray free-electron laser (XFEL) pulses involve a conflict between the incident brightness required to achieve diffraction-limited atomic resolution and the electronic and structural damage induced by the illumination. Here we show that previous estimates of the conditions under which biomolecular structures may be obtained in this manner are unduly restrictive, because they are based on a coherent diffraction model that is not appropriate to the proposed interaction conditions. A more detailed imaging model derived from optical coherence theory and quantum electrodynamics is shown to be far more tolerant of electronic damage. The nuclear density is employed as the principal descriptor of molecular structure. The foundations of the approach may also be used to characterize electrodynamical processes by performing scattering experiments on complex molecules of known structure.Comment: 16 pages, 2 figure

    Using 3D shadows to detect object hiding attacks on autonomous vehicle perception

    Get PDF
    Autonomous Vehicles (AVs) are mostly reliant on LiDAR sensors which enable spatial perception of their surroundings and help make driving decisions. Recent works demonstrated attacks that aim to hide objects from AV perception, which can result in severe consequences. 3D shadows, are regions void of measurements in 3D point clouds which arise from occlusions of objects in a scene. 3D shadows were proposed as a physical invariant valuable for detecting spoofed or fake objects. In this work, we leverage 3D shadows to locate obstacles that are hidden from object detectors. We achieve this by searching for void regions and locating the obstacles that cause these shadows. Our proposed methodology can be used to detect an object that has been hidden by an adversary as these objects, while hidden from 3D object detectors, still induce shadow artifacts in 3D point clouds, which we use for obstacle detection. We show that using 3D shadows for obstacle detection can achieve high accuracy in matching shadows to their object and provide precise prediction of an obstacle’s distance from the ego-vehicle

    Jacobian ensembles improve robustness trade-offs to adversarial attacks

    Get PDF
    Deep neural networks have become an integral part of our software infrastructure and are being deployed in many widely-used and safety-critical applications. However, their integration into many systems also brings with it the vulnerability to test time attacks in the form of Universal Adversarial Perturbations (UAPs). UAPs are a class of perturbations that when applied to any input causes model misclassification. Although there is an ongoing effort to defend models against these adversarial attacks, it is often difficult to reconcile the trade-offs in model accuracy and robustness to adversarial attacks. Jacobian regularization has been shown to improve the robustness of models against UAPs, whilst model ensembles have been widely adopted to improve both predictive performance and model robustness. In this work, we propose a novel approach, Jacobian Ensembles – a combination of Jacobian regularization and model ensembles to significantly increase the robustness against UAPs whilst maintaining or improving model accuracy. Our results show that Jacobian Ensembles achieves previously unseen levels of accuracy and robustness, greatly improving over previous methods that tend to skew towards only either accuracy or robustness

    Light propagation through closed-loop atomic media beyond the multiphoton resonance condition

    Get PDF
    The light propagation of a probe field pulse in a four-level double-lambda type system driven by laser fields that form a closed interaction loop is studied. Due to the finite frequency width of the probe pulse, a time-independent analysis relying on the multiphoton resonance assumption is insufficient. Thus we apply a Floquet decomposition of the equations of motion to solve the time-dependent problem beyond the multiphoton resonance condition. We find that the various Floquet components can be interpreted in terms of different scattering processes, and that the medium response oscillating in phase with the probe field in general is not phase-dependent. The phase dependence arises from a scattering of the coupling fields into the probe field mode at a frequency which in general differs from the probe field frequency. We thus conclude that in particular for short pulses with a large frequency width, inducing a closed loop interaction contour may not be advantageous, since otherwise the phase-dependent medium response may lead to a distortion of the pulse shape. Finally, using our time-dependent analysis, we demonstrate that both the closed-loop and the non-closed loop configuration allow for sub- and superluminal light propagation with small absorption or even gain. Further, we identify one of the coupling field Rabi frequencies as a control parameter that allows to conveniently switch between sub- and superluminal light propagation.Comment: 10 pages, 8 figure

    HA-grid: security aware hazard analysis for smart grids

    Get PDF
    Attacks targeting smart grid infrastructures can result in the disruptions of power supply as well as damages to costly equipment, with significant impact on safety as well as on end-consumers. It is therefore of essence to identify attack paths in the infrastructure that lead to safety violations and to determine critical components that must be protected. In this paper, we introduce a methodology (HA-Grid) that incorporates both safety and security modelling of smart grid infrastructure to analyse the impact of cyber threats on the safety of smart grid infrastructures. HA-Grid is applied on a smart grid test-bed to identify attack paths that lead to safety hazards, and to determine the common nodes in these attack paths as critical components that must be protected

    Status update on White-eared Night Heron Gorsachius magnificus in South China

    Get PDF
    White-eared Night Heron Gorsachius magnificus is probably the most threatened heron species in the world, and the highest priority for heron species conservation. From 1990 to 1998, there were sightings from only six localities in the wild. There are none in captivity. In 1998 a caged bird was found in a wildlife market in the city of Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China. This finding prompted a 12-month survey in 1998-1999 of both markets and potential habitats in Guangxi. Several captured birds provided direct evidence of the existence of small populations in Guangxi and Guangdong Provinces. The respective habitats were surveyed in spring 2000, with emphasis on observations at dusk. The species was seen at two locations. Although some of the captured birds came from highly degraded habitat, the best sites seemed to be in areas near extensive primary forests, with streams, rice fields and marshes. The information obtained will be used to compile a detailed Action Plan designed to prevent the extinction of the species.published_or_final_versio

    Antifungal evaluation of traditional Chinese medicines against clinical Candida isolates

    Get PDF
    published_or_final_versio
    corecore