102 research outputs found

    Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa

    Get PDF
    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10−6), and rs7700147, an intergenic variant (P=2.93 × 10−5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes

    A novel variant in GLIS3 is associated with osteoarthritis

    Get PDF
    Objectives Osteoarthritis (OA) is a complex disease, but its genetic aetiology remains poorly characterised. To identify novel susceptibility loci for OA, we carried out a genome-wide association study (GWAS) in individuals from the largest UK-based OA collections to date. Methods We carried out a discovery GWAS in 5414 OA individuals with knee and/or hip total joint replacement (TJR) and 9939 population-based controls. We followed-up prioritised variants in OA subjects from the interim release of the UK Biobank resource (up to 12 658 cases and 50 898 controls) and our lead finding in operated OA subjects from the full release of UK Biobank (17 894 cases and 89 470 controls). We investigated its functional implications in methylation, gene expression and proteomics data in primary chondrocytes from 12 pairs of intact and degraded cartilage samples from patients undergoing TJR. Results We detect a genome-wide significant association at rs10116772 with TJR (P=3.7×10−8; for allele A: OR (95% CI) 0.97 (0.96 to 0.98)), an intronic variant in GLIS3, which is expressed in cartilage. Variants in strong correlation with rs10116772 have been associated with elevated plasma glucose levels and diabetes. Conclusions We identify a novel susceptibility locus for OA that has been previously implicated in diabetes and glycaemic traits

    The 2018 Otto Aufranc Award: How does genome-wide variation affect osteolysis risk after THA?

    Get PDF
    BACKGROUND: Periprosthetic osteolysis resulting in aseptic loosening is a leading cause of THA revision. Individuals vary in their susceptibility to osteolysis and heritable factors may contribute to this variation. However, the overall contribution that such variation makes to osteolysis risk is unknown. QUESTIONS/PURPOSES: We conducted two genome-wide association studies to (1) identify genetic risk loci associated with susceptibility to osteolysis; and (2) identify genetic risk loci associated with time to prosthesis revision for osteolysis. METHODS: The Norway cohort comprised 2624 patients after THA recruited from the Norwegian Arthroplasty Registry, of whom 779 had undergone revision surgery for osteolysis. The UK cohort included 890 patients previously recruited from hospitals in the north of England, 317 who either had radiographic evidence of and/or had undergone revision surgery for osteolysis. All participants had received a fully cemented or hybrid THA using a small-diameter metal or ceramic-on-conventional polyethylene bearing. Osteolysis susceptibility case-control analyses and quantitative trait analyses for time to prosthesis revision (a proxy measure of the speed of osteolysis onset) in those patients with osteolysis were undertaken in each cohort separately after genome-wide genotyping. Finally, a meta-analysis of the two independent cohort association analysis results was undertaken. RESULTS: Genome-wide association analysis identified four independent suggestive genetic signals for osteolysis case-control status in the Norwegian cohort and 11 in the UK cohort (p ≤ 5 x 10). After meta-analysis, five independent genetic signals showed a suggestive association with osteolysis case-control status at p ≤ 5 x 10 with the strongest comprising 18 correlated variants on chromosome 7 (lead signal rs850092, p = 1.13 x 10). Genome-wide quantitative trait analysis in cases only showed a total of five and nine independent genetic signals for time to revision at p ≤ 5 x 10, respectively. After meta-analysis, 11 independent genetic signals showed suggestive evidence of an association with time to revision at p ≤ 5 x 10 with the largest association block comprising 174 correlated variants in chromosome 15 (lead signal rs10507055, p = 1.40 x 10). CONCLUSIONS: We explored the heritable biology of osteolysis at the whole genome level and identify several genetic loci that associate with susceptibility to osteolysis or with premature revision surgery. However, further studies are required to determine a causal association between the identified signals and osteolysis and their functional role in the disease. CLINICAL RELEVANCE: The identification of novel genetic risk loci for osteolysis enables new investigative avenues for clinical biomarker discovery and therapeutic intervention in this disease

    Lifetime risk and genetic predisposition to post-traumatic OA of the knee in the UK Biobank

    Get PDF
    Objective Acute knee injury is associated with post-traumatic OA (PTOA). Very little is known about the genome-wide associations of PTOA when compared with idiopathic OA (iOA). Our objective was to describe the development of knee OA after knee injury and its genetic associations in UK Biobank (UKB). Design Clinically significant structural knee injuries in those <=50 years were identified from electronic health record and self-reported data in 502,409 UKB participants. Time-to-first knee OA code was compared in injured cases and age-/sex-matched non-injured controls using Cox Proportional Hazards models. A time-to-OA genome-wide association study (GWAS) sought evidence for PTOA risk variants 6 months-20 years following injury. Evidence for associations of two iOA polygenic risk scores (PRS) was sought. Results Of 4233 knee injury cases, 1896 (44.8%) were female (mean age at injury 34.1 years [SD10.4]). Over a median of 30.2 (IQR19.5-45.4) years, 1096 (25.9%) of injured cases developed knee OA. The overall hazards ratio (HR) for knee OA after injury was 1.81[1.70,1.93],P=8.9x10-74. Female sex and increasing age at injury were associated with knee OA following injury (HR1.15[1.02,1.30];1.07[1,07,1.07] respectively). OA risk was highest in the first 5 years after injury (HR3.26[2.67,3.98]), persisting for 40 years. In 3074 knee injury cases included in the time-to-OA GWAS, no variants reached genome-wide significance. iOA PRS was not associated with time-to-OA (HR 0.43[0.02,8.41]). Conclusions Increasing age at injury and female sex appear to be associated with future development of PTOA in UKB, the risk of which was greatest in the 5 years after injury. Further international efforts towards a better-powered meta-analysis will definitively elucidate genetic similarities and differences of PTOA and iOA

    Genome-wide association study of developmental dysplasia of the hip identifies an association with GDF5

    Get PDF
    Developmental dysplasia of the hip (DDH) is the most common skeletal developmental disease. However, its genetic architecture is poorly understood. We conduct the largest DDH genome-wide association study to date and replicate our findings in independent cohorts. We find the heritable component of DDH attributable to common genetic variants to be 55% and distributed equally across the autosomal and X-chromosomes. We identify replicating evidence for association between GDF5 promoter variation and DDH (rs143384, effect allele A, odds ratio 1.44, 95% confidence interval 1.34–1.56, P = 3.55 × 10−22). Gene-based analysis implicates GDF5 (P = 9.24 × 10−12), UQCC1 (P = 1.86 × 10−10), MMP24 (P = 3.18 × 10−9), RETSAT (P = 3.70 × 10−8) and PDRG1 (P = 1.06 × 10−7) in DDH susceptibility. We find shared genetic architecture between DDH and hip osteoarthritis, but no predictive power of osteoarthritis polygenic risk score on DDH status, underscoring the complex nature of the two traits. We report a scalable, time-efficient recruitment strategy and establish for the first time to our knowledge a robust DDH genetic association locus at GDF5

    A population-specific reference panel empowers genetic studies of Anabaptist populations

    Get PDF
    Genotype imputation is a powerful strategy for achieving the large sample sizes required for identification of variants underlying complex phenotypes, but imputation of rare variants remains problematic. Genetically isolated populations offer one solution, however population-specific reference panels are needed to assure optimal imputation accuracy and allele frequency estimation. Here we report the Anabaptist Genome Reference Panel (AGRP), the first whole-genome catalogue of variants and phased haplotypes in people of Amish and Mennonite ancestry. Based on high-depth whole-genome sequence (WGS) from 265 individuals, the AGRP contains >12 M high-confidence single nucleotide variants and short indels, of which ~12.5% are novel. These Anabaptist-specific variants were more deleterious than variants with comparable frequencies observed in the 1000 Genomes panel. About 43,000 variants showed enriched allele frequencies in AGRP, consistent with drift. When combined with the 1000 Genomes Project reference panel, the AGRP substantially improved imputation, especially for rarer variants. The AGRP is freely available to researchers through an imputation server

    Rare SLC13A1 variants associate with intervertebral disc disorder highlighting role of sulfate in disc pathology

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Back pain is a common and debilitating disorder with largely unknown underlying biology. Here we report a genome-wide association study of back pain using diagnoses assigned in clinical practice; dorsalgia (119,100 cases, 909,847 controls) and intervertebral disc disorder (IDD) (58,854 cases, 922,958 controls). We identify 41 variants at 33 loci. The most significant association (ORIDD = 0.92, P = 1.6 × 10−39; ORdorsalgia = 0.92, P = 7.2 × 10−15) is with a 3’UTR variant (rs1871452-T) in CHST3, encoding a sulfotransferase enzyme expressed in intervertebral discs. The largest effects on IDD are conferred by rare (MAF = 0.07 − 0.32%) loss-of-function (LoF) variants in SLC13A1, encoding a sodium-sulfate co-transporter (LoF burden OR = 1.44, P = 3.1 × 10−11); variants that also associate with reduced serum sulfate. Genes implicated by this study are involved in cartilage and bone biology, as well as neurological and inflammatory processes.Peer reviewe
    corecore