206 research outputs found

    Physiology and pathology of T-cell aging

    Get PDF
    Acquired immune function shows recognizable changes over time with organismal aging. These changes include T-cell dysfunction, which may underlie diminished resistance to infection and possibly various chronic age-associated diseases in the elderly. T-cell dysfunction may occur at distinct stages, from naive cells to the end stages of differentiation during immune responses. The thymus, which generates naive T cells, shows unusually early involution resulting in progressive reduction of T-cell output after adolescence, but peripheral T-cell numbers are maintained through antigen-independent homeostatic proliferation of naive T cells driven by the major histocompatibility complex associated with self-peptides and homeostatic cytokines, retaining the diverse repertoire. However, extensive homeostatic proliferation may lead to the emergence of dysfunctional CD4+ T cells with features resembling senescent cells, termed senescence-associated T (SA-T) cells, which increase and accumulate with age. In situations such as chronic viral infection, T-cell dysfunction may also develop via persistent antigen stimulation, termed exhaustion, preventing possible immunopathology due to excessive immune responses. Exhausted T cells are developed through the effects of checkpoint receptors such as PD-1 and may be reversed with the receptor blockade. Of note, although defective in their regular T-cell antigen-receptor-mediated proliferation, SA-T cells secrete abundant pro-inflammatory factors such as osteopontin, reminiscent of an SA-secretory phenotype. A series of experiments in mouse models indicated that SA-T cells are involved in systemic autoimmunity as well as chronic tissue inflammation following tissue stresses. In this review, we discuss the physiological aspects of T-cell dysfunction associated with aging and its potential pathological involvement in age-associated diseases and possibly cancer

    Long-term follow-up of an individual with vitamin B6-dependent seizures

    Get PDF
    We report on a 31-year-old female with vitamin B6-dependent seizures whose seizure onset was in the neonatal period. Her elder brother had the same disorder and died in infancy. Administration of vitamin B6 was initiated in the postnatal period. At the age of 12 years 1 month, 2 months after withdrawal of vitamin B6, visual seizures began to occur frequently. Myoclonic seizures and occasional generalized convulsive seizures were also observed. At the same time, photoparoxysmal response and spontaneous diffuse spike–wave bursts were seen on her EEG. Myoclonic seizures were provoked by intermittent photic stimulation during the EEG. It is distinctive that visual seizures were one of the main seizure types in this patient, that her clinical course was relatively benign, and that she has normal intellectual outcome.</p

    Long-term follow-up of an individual with vitamin B6-dependent seizures

    Get PDF
    We report on a 31-year-old female with vitamin B6-dependent seizures whose seizure onset was in the neonatal period. Her elder brother had the same disorder and died in infancy. Administration of vitamin B6 was initiated in the postnatal period. At the age of 12 years 1 month, 2 months after withdrawal of vitamin B6, visual seizures began to occur frequently. Myoclonic seizures and occasional generalized convulsive seizures were also observed. At the same time, photoparoxysmal response and spontaneous diffuse spike–wave bursts were seen on her EEG. Myoclonic seizures were provoked by intermittent photic stimulation during the EEG. It is distinctive that visual seizures were one of the main seizure types in this patient, that her clinical course was relatively benign, and that she has normal intellectual outcome.</p

    Circadian production of melatonin in cartilage modifies rhythmic gene expression

    Get PDF
    Endochondral ossification, including bone growth and other metabolic events, is regulated by circadian rhythms. Herein, we provide evidence that melatonin has a direct effect on the circadian rhythm of chondrocytes. We detected mRNA expression of the genes which encode the melatonin-synthesizing enzymes AANAT (arylalkylamine N-acetyltransferase) and HIOMT (hydroxyindole O-methyltransferase), as well as the melatonin receptors MT1 and MT2 in mouse primary chondrocytes and cartilage. Production of melatonin was confirmed by mass spectrometric analysis of primary rat and chick chondrocytes. Addition of melatonin to primary mouse chondrocytes caused enhanced cell growth and increased expression of Col2a1, Aggrecan, and Sox9, but inhibited Col10a1 expression in primary BALB/c mouse chondrocytes. Addition of luzindole, an MT1 and MT2 antagonist, abolished these effects. These data indicate that chondrocytes produce melatonin, which regulates cartilage growth and maturation via the MT1 and MT2 receptors. Kinetic analysis showed that melatonin caused rapid upregulation of Aanat, Mt1, Mt2, and Pthrp expression, followed by Sox9 and Ihh. Furthermore, expression of the clock gene Bmal1 was induced, while that of Per1 was downregulated. Chronobiological analysis of synchronized C3H mouse chondrocytes revealed that melatonin induced the cyclic expression of Aanat and modified the cyclic rhythm of Bmal1, Mt1, and Mt2. In contrast, Mt1 and Mt2 showed different rhythms from Bmal1 and Aanat, indicating the existence of different regulatory genes. Our results indicate that exogenous and endogenous melatonin work in synergy in chondrocytes to adjust rhythmic expression to the central suprachiasmatic nucleus clock

    Sulfur assimilation using gaseous carbonyl sulfideby the soil fungus Trichoderma harzianum

    Get PDF
    Fungi have the capacity to assimilate a diverse range of both inorganic and organic sulfur compounds. It has been recognized that all sulfur sources taken up by fungi are in soluble forms. In this study, we present evidence that fungi can utilize gaseous carbonyl sulfide(COS) for the assimilation of a sulfur compound. We found that the filamentousfungus Trichoderma harzianum strain THIF08, which has constitutively high COS-degrading activity, was able to grow with COS as the sole sulfur source. Cultivation with 34S-labeled COS revealed that sulfur atom from COS was incorporated into intracellular metabolites such as glutathione and ergothioneine. COS degradation by strain THIF08, in which as much of the moisture derived from the agar medium as possible was removed, indicated that gaseous COS was taken up directly into the cell. Escherichia coli transformed with a COS hydrolase (COSase) gene, which is clade D of the β-class carbonic anhydrase subfamily enzyme with high specificity for COS but low activity for CO2 hydration, showed that the COSase is involved in COS assimilation. Comparison of sulfur metabolites of strain THIF08 revealed a higher relative abundance of reduced sulfur compounds under the COS-supplemented condition than the sulfate-supplemented condition, suggesting that sulfur assimilation is more energetically efficient with COS than with sulfate because there is no redox change of sulfur. Phylogenetic analysis of the genes encoding COSase, which are distributed in a wide range of fungal taxa, suggests that the common ancestor of Ascomycota, Basidiomycota, and Mucoromycota acquired COSase at about 790-670 Ma. © 2024 Iizuka et al

    The identification and functional implications of human-specific "fixed" amino acid substitutions in the glutamate receptor family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The glutamate receptors (GluRs) play a vital role in the mediation of excitatory synaptic transmission in the central nervous system. To clarify the evolutionary dynamics and mechanisms of the GluR genes in the lineage leading to humans, we determined the complete sequences of the coding regions and splice sites of 26 chimpanzee GluR genes.</p> <p>Results</p> <p>We found that all of the reading frames and splice sites of these genes reported in humans were completely conserved in chimpanzees, suggesting that there were no gross structural changes in humans after their divergence from the human-chimpanzee common ancestor. We observed low <it>K</it><sub><it>A</it></sub>/<it>K</it><sub><it>S </it></sub>ratios in both humans and chimpanzees, and we found no evidence of accelerated evolution. We identified 30 human-specific "fixed" amino acid substitutions in the GluR genes by analyzing 80 human samples of seven different populations worldwide. Grantham's distance analysis showed that <it>GRIN2C </it>and <it>GRIN3A </it>are the most and the second most diverged GluR genes between humans and chimpanzees. However, most of the substitutions are non-radical and are not clustered in any particular region. Protein motif analysis assigned 11 out of these 30 substitutions to functional regions. Two out of these 11 substitutions, D71G in <it>GRIN3A </it>and R727H in <it>GRIN3B</it>, caused differences in the functional assignments of these genes between humans and other apes.</p> <p>Conclusion</p> <p>We conclude that the GluR genes did not undergo drastic changes such as accelerated evolution in the human lineage after the divergence of chimpanzees. However, there remains a possibility that two human-specific "fixed" amino acid substitutions, D71G in <it>GRIN3A </it>and R727H in <it>GRIN3B</it>, are related to human-specific brain function.</p

    Direction-sensitive dark matter search results in a surface laboratory

    Get PDF
    We developed a three-dimensional gaseous tracking device and performed a direction-sensitive dark matter search in a surface laboratory. By using 150 Torr carbon-tetrafluoride (CF_4 gas), we obtained a sky map drawn with the recoil directions of the carbon and fluorine nuclei, and set the first limit on the spin-dependent WIMP (Weakly Interacting Massive Particles)-proton cross section by a direction-sensitive method. Thus, we showed that a WIMP-search experiment with a gaseous tracking device can actually set limits. Furthermore, we demonstrated that this method will potentially play a certain role in revealing the nature of dark matter when a low-background large-volume detector is developed.Comment: 9 figures, accepted for publication in Phys. Lett.

    Novel Variants in the CLCN1, RYR2, and DCTN1 Found in Elderly Japanese Dementia Patients: A Case Series

    Get PDF
    Dementia has an enormous impact on medical and financial resources in aging societies like Japan. Diagnosis of dementia can be made by physical and mental examinations, imaging tests, and findings of high abnormal proteins in cerebrospinal fluids. In addition, genetic tests can be performed in neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). In this case series, we presented three cases of dementia with unknown causes who carry novel variants in the genes associated with neurodegenerative diseases. Three patients (Patients 1, 2, and 6) were found by screening 18 dementia patients using a gene panel including 63 genes. The age of onset for Patient 1 was 74 years old, and his father had PD and mother had AD. The age of onset for Patient 2 was 75 years old, and her mother had AD. The age of onset for Patient 6 was 83 years old, and her father, two sisters, and daughter had dementia. The Mini-Mental State Examination produced results of 20, 15, and 22, respectively. The suspected diagnosis by neurological examinations and imaging studies for Patients 1 and 2 was AD, and for Patient 6 was FTD. Patient 1 was treated with donepezil; Patient 2 was treated with donepezil and memantine; and Patient 6 was treated with donepezil, galantamine, and rivastigmine. The three rare variants identified were: CLCN1, encoding a chloride channel, c.2848G>A:p.Glu950Lys (Patient 1); RYR2, encoding a calcium releasing ryanodine receptor, c.13175A>G:p.Lys4392Arg (Patient 2); and DCTN1, encoding a subunit of dynactin, c. 3209G>A:p.Arg1070Gln (Patient 6). The detected variants were interpreted according to the American College of Medical Genetics (ACMG) guidelines. The minor allele frequency for each variant was 0.025%, 0.023%, and 0.0004% in East Asians, respectively. The DCTN1 variant found in Patient 6 might be associated with FTD. Although none of them were previously reported in dementia patients, all variants were classified as variants of unknown significance (VUS). Our report suggests that results of genetic tests in elderly patients with dementia need to be carefully interpreted. Further data accumulation of genotype-phenotype relationships and development of appropriate functional models are warranted
    corecore