17 research outputs found

    RUNXを標的とした遺伝子スイッチオフ法はBIRC5/PIF1-p21経路を介してマウスの膠芽腫の増殖を抑制する

    Get PDF
    京都大学新制・課程博士博士(医学)甲第24511号医博第4953号新制||医||1064(附属図書館)京都大学大学院医学研究科医学専攻(主査)教授 伊藤 貴浩, 教授 岩田 想, 教授 河本 宏学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    A RUNX-targeted gene switch-off approach modulates the BIRC5/PIF1-p21 pathway and reduces glioblastoma growth in mice

    Get PDF
    Glioblastoma is the most common adult brain tumour, representing a high degree of malignancy. Transcription factors such as RUNX1 are believed to be involved in the malignancy of glioblastoma. RUNX1 functions as an oncogene or tumour suppressor gene with diverse target genes. Details of the effects of RUNX1 on the acquisition of malignancy in glioblastoma remain unclear. Here, we show that RUNX1 downregulates p21 by enhancing expressions of BIRC5 and PIF1, conferring anti-apoptotic properties on glioblastoma. A gene switch-off therapy using alkylating agent-conjugated pyrrole-imidazole polyamides, designed to fit the RUNX1 DNA groove, decreased expression levels of BIRC5 and PIF1 and induced apoptosis and cell cycle arrest via p21. The RUNX1-BIRC5/PIF1-p21 pathway appears to reflect refractory characteristics of glioblastoma and thus holds promise as a therapeutic target. RUNX gene switch-off therapy may represent a novel treatment for glioblastoma

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Factors associated with somnolence during brain function mapping in awake craniotomy

    Get PDF
    Somnolence during brain function mapping is one of the factors that inhibit the accomplishment of the goals of awake craniotomy. We examined the effect of anesthesia depth measured by bispectral index (BIS) during pre-awake phase on somnolence during brain function mapping and also explored the factors associated with somnolence. We examined the association between BIS values during pre-awake phase and somnolence during the first 30 min of brain function mapping in 55 patients who underwent awake craniotomy at Kyoto University Hospital from 2015 to 2018. The pre-awake BIS value was defined as the mean BIS value for 60 min before the removal of the airway. Somnolence during brain function mapping was the primary outcome, defined as either of the following conditions: inability to follow up, disorientation, or inability to assess speech function. Additionally, we compared patient or perioperative variables between patients with/without somnolence. Somnolence occurred in 14 patients (25.5%), of which 6 patients (10.9%) were unable to complete brain function mapping. There was no significant difference in the pre-awake BIS value between patients with/without somnolence (median: 46 vs. 49, P = 0.192). Somnolence was not significantly associated with age, gender, and the number of preoperative anticonvulsive drugs, but patients with somnolence had a significantly lower preoperative Western Aphasia Battery (WAB) aphasia quotient score (median 93.8 vs. 98.6, P = 0.011). We did not find an association between pre-awake BIS value and somnolence during brain function mapping. Somnolence likely occurs in patients with a low preoperative WAB aphasia quotient score

    A Nationwide Questionnaire Survey on Awake Craniotomy in Japan

    Get PDF
    The number of awake craniotomies is increasing because of its beneficial features. However, not enough information is available regarding the current status of awake craniotomy in Japan. To evaluate the current status of awake craniotomy in institutes, a nationwide questionnaire survey was conducted. From June to August 2019, we conducted a questionnaire survey on awake craniotomy in the neurosurgery department of 45 institutes that perform awake craniotomies in Japan. Responses were obtained from 39 institutes (response rate, 86.7%). The main methods of awake craniotomy were almost the same in all institutes. Twenty-six institutes (66.7%) had fewer than 10 awake craniotomies (low-volume institutes) per year, and 13 high-volume institutes (33.3%) performed more than 10 awake craniotomies annually. Some institutes experienced a relatively high frequency of adverse events. In 11 institutes (28.2%), the frequency of intraoperative seizures was more than 10%. An intraoperative seizure frequency of 1%-9%, 10%-29%, and over 30% was identified in 12 (92%), 0 (0%), and 1 (8%) of the high-volume institutes, which was significantly less than in 16 (62%), 10 (38%), and 0 (0%) of the low-volume institutes (p = 0.0059). The routine usage of preoperative antiepileptic drugs was not different between them, but the old type was used more often in the low-volume institutes (p = 0.0022). Taken together, the annual number of awake craniotomies was less than 10 in over two-thirds of the institutes. Fewer intraoperative seizures were reported in the high-volume institutes, which tend not to preoperatively use the old type of antiepileptic drugs

    Seizure control by adding on other anti-seizure medication on seizure during levetiracetam administration in patients with glioma-related epilepsy

    No full text
    Abstract Background Epilepsy is a major symptom in patients with glioma. Levetiracetam (LEV) is recognized as a first-line treatment for glioma-related epilepsy. Increasing the LEV dose is allowed into patients with seizure occurrence against its initial dose. However, the therapeutic efficacy of increasing the LEV dose in response to seizure occurrence remains unclear. Methods We retrospectively analyzed 236 glioma patients who were treated with antiseizure medications (ASMs) internally at our institute between September 2010 and December 2017. Of these, the analysis focused on 156 patients treated with LEV who had a clear history of administration. Results Seizure occurrences were observed in 21 of 75 patients (26.7%) who received LEV as first-line therapy and in 33 of 81 patients (40.7%) who received LEV as non-first-line treatment. The seizure control rate for seizure occurrence with LEV as first-line treatment was significantly higher in patients treated with addition of other ASMs (72.7%) than in those treated with increasing dose of LEV (20.0%) (p = 0.016). The seizure control rate for seizure occurrence with LEV as non-first-line treatment did not differ significantly between patients with addition of other ASMs (58.3%) and those treated with increasing dose of LEV (47.6%) (p = 0.554). Conclusions Adding other ASMs was more effective than increasing the LEV dose for seizure control in patients treated with LEV as first-line treatment, but they demonstrated comparable efficacy in patients treated with LEV as non-first-line treatment
    corecore