10 research outputs found
Air-breathing hypersonic vehicle guidance and control studies; An integrated trajectory/control analysis methodology: Phase 1
A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty
An optimal design methodology for a class of air-breathing launch vehicles
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1980.MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERO.Vita.Includes bibliographical references.by Philip David Hattis.Ph.D
Seeker-based adaptive guidance via reinforcement meta-learning applied to asteroid close proximity operations
Current practice for asteroid close proximity maneuvers requires extremely accurate characterization of the environmental dynamics and precise spacecraft positioning prior to the maneuver. This creates a delay of several months between the spacecraft’s arrival and the ability to safely complete close proximity maneuvers. In this work we develop an adaptive integrated guidance, navigation, and control system that can complete these maneuvers in environments with unknown dynamics, with initial conditions spanning a large deployment region, and without a shape model of the asteroid. The system is implemented as a policy optimized using reinforcement meta-learning. The spacecraft is equipped with an optical seeker that locks to either a terrain feature, reflected light from a targeting laser, or an active beacon, and the policy maps observations consisting of seeker angles and LIDAR range readings directly to engine thrust commands. The policy implements a recurrent network layer that allows the deployed policy to adapt real time to both environmental forces acting on the agent and internal disturbances such as actuator failure and center of mass variation. We validate the guidance system through simulated landing maneuvers in a six degrees-of-freedom simulator. The simulator randomizes the asteroid’s characteristics such as solar radiation pressure, density, spin rate, and nutation angle, requiring the guidance and control system to adapt to the environment. We also demonstrate robustness to actuator failure, sensor bias, and changes in the spacecraft’s center of mass and inertia tensor. Finally, we suggest a concept of operations for asteroid close proximity maneuvers that is compatible with the guidance system
The Development of NASA's Fault Management Handbook
Goal: (1) Ameliorate schedule, cost and predictability challenges that often are faced when testing and operating FM systems (2) Improve reliability and safety of NASA s flight and ground systems (3) Coalesce the FM field. Approach: (1) Identify qualified team of FM practitioners and systems engineers (2) Evaluate findings and recommendations from 2008 FM Workshop (3) Initial emphasis on foundational issues; e.g. establish common terminology (1) Capitalize on existing materia