29 research outputs found
Medical Students Educate Teens About Skin Cancer: What Have We Learned?
Skin cancer is a serious societal problem, and public awareness outreach, including to youth, is crucial. Medical students have joined forces to educate adolescents about skin cancer with significant impacts; even one 50-min interactive outreach session led to sustained changes in knowledge and behavior in a cohort of 1,200 adolescents surveyed. Medical students can act as a tremendous asset to health awareness public outreach efforts: enthusiastic volunteerism keeps education cost-effective, results in exponential spread of information, reinforces knowledge and communication skills of future physicians, and can result in tangible, life-saving benefits such as early detection of melanoma
‘Don’t use “the weak word”’: Women brewers, identities and gendered territories of embodied work
Focusing on an unresearched group of women brewers, and drawing conceptually on embodiment and identity work, this article explores worker corporealities within the gendered landscape of microbreweries and deepens understanding of the body/work/gender nexus in the context of brewer’s work. In doing so, it challenges the marginalisation of female worker bodies in scholarly work on male-dominated occupations. Drawing on interview and observation data collected in the UK in 2015, verbal narratives of women brewers’ experiences of their working lives are utilised to provide insights into how their gendered bodily practices constitute resources for constructing a distinctive ‘brewster’ identity. Women brewers engage in identity work, on both individual and collective levels, through the material and symbolic framing of their embodied and gendered working selves; navigating their physical working environments; downplaying gender to emphasise physical competence; and foregrounding gender in relation to non-physical aspects to accentuate difference and collective contribution
Recommended from our members
Comprehensive work plan and health and safety plan for the 7500 Area Contamination Site sampling at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program
As part of the Environmental Restoration Program sponsored by the US Department of Energy`s Office of Environmental Restoration and Waste Management, this plan has been developed for the environmental sampling efforts at the 7500 Area Contamination Site, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. This plan was developed by the Measurement Applications and Development Group (MAD) of the Health and Safety Research Division of ORNL and will be implemented by ORNL/MAD. Major components of the plan include (1) a quality assurance project plan that describes the scope and objectives of ORNL/MAD activities at the 7500 Area Contamination Site, assigns responsibilities, and provides emergency information for contingencies that may arise during field operations; (2) sampling and analysis sections; (3) a site-specific health and safety section that describes general site hazards, hazards associated with specific tasks, personnel protection requirements, and mandatory safety procedures; (4) procedures and requirements for equipment decontamination and responsibilities for generated wastes, waste management, and contamination control; and (5) a discussion of form completion and reporting required to document activities at the 7500 Area Contamination Site
Recommended from our members
A radiological and chemical investigation of the 7500 Area Contamination Site at Oak Ridge National Laboratory, Oak Ridge, Tennessee
A radiological and chemical investigation of the 7500 Area Contamination Site at Oak Ridge National Laboratory (ORNL) was conducted intermittently from February 1992 through May 1992. The investigation was performed by the Measurement Applications and Development Group of the Health and Safety Research Division of ORNL at the request of the US Department of Energy`s Oak Ridge Operations Office and the ORNL Environmental Restoration Program. Results of this investigation indicate that the source of radioactive contamination at the point of the contamination incident is from one of the underground abandoned lines. The contamination in soil is likely the result of residual contamination from years of waste transport and maintenance operations (e.g., replacement of degraded joints, upgrading or replacement of entire pipelines, and associated landscaping activities). However, because (1) there is currently an active LLW line positioned in the same subsurface trench with the abandoned lines and (2) the physical condition of the abandoned lines may be brittle, this inquiry could not determine which abandoned line was responsible for the subsurface contamination. Soil sampling at the location of the contamination incident and along the pipeline route was performed in a manner so as not to damage the active LLW line and abandoned lines. Recommendations for corrective actions are included
Network Management Reconsidered: An Inquiry into Management of Network Structures in Public Sector Service Provision
Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion
AbstractExpanding the portfolio of products that can be made from lignin will be critical to enabling a viable bio-based economy. Here, we engineer Pseudomonas putida for high-yield production of the tricarboxylic acid cycle-derived building block chemical, itaconic acid, from model aromatic compounds and aromatics derived from lignin. We develop a nitrogen starvation-detecting biosensor for dynamic two-stage bioproduction in which itaconic acid is produced during a non-growth associated production phase. Through the use of two distinct itaconic acid production pathways, the tuning of TCA cycle gene expression, deletion of competing pathways, and dynamic regulation, we achieve an overall maximum yield of 56% (mol/mol) and titer of 1.3 g/L from p-coumarate, and 1.4 g/L titer from monomeric aromatic compounds produced from alkali-treated lignin. This work illustrates a proof-of-principle that using dynamic metabolic control to reroute carbon after it enters central metabolism enables production of valuable chemicals from lignin at high yields by relieving the burden of constitutively expressing toxic heterologous pathways.</jats:p
Genomic and phenotypic trait variation of the opportunistic human pathogen <i>Aspergillus flavus</i> and its non-pathogenic close relatives
ABSTRACTFungal diseases affect millions of humans annually, yet fungal pathogens remain understudied. The mold Aspergillus flavus is a causative agent of both aspergillosis and fungal keratitis infections, but species closely related to A. flavus are not considered clinically relevant. To study the evolution of A. flavus pathogenicity, we examined genomic and phenotypic traits of two strains of A. flavus and three closely related non- pathogenic species: Aspergillus arachidicola (two strains), Aspergillus parasiticus (two strains), and Aspergillus nomiae (one strain). We identified over 3,000 orthologous proteins unique to A. flavus, including seven biosynthetic gene clusters present in A. flavus strains and absent in the three non-pathogenic species. We chose to characterize secondary metabolite production for all seven strains under two clinically relevant conditions, temperature and salt concentration. Temperature impacted metabolite production in all species. Conversely, we found a lack of impact of salinity on secondary metabolite production. Strains of the same species produced different metabolites. Growth under stress conditions revealed additional heterogeneity within species. Using the invertebrate model of fungal disease Galleria mellonella, we found virulence of strains of the same species varied widely, and A. flavus strains were not more virulent than strains of the non-pathogenic species. In a murine model of fungal keratitis, we observed significantly lower disease severity and corneal thickness for A. arachidicola compared to other species at 48 hrs, but not at 72 hrs. Our work identifies key phenotypic, chemical, and genomic similarities and differences between the opportunistic human pathogen A. flavus and its non-pathogenic relatives.</jats:p
