309 research outputs found

    Starburst Intensity Limit of Galaxies at z~5-6

    Full text link
    The peak star formation intensity in starburst galaxies does not vary significantly from the local universe to redshift z~6. We arrive at this conclusion through new surface brightness measurements of 47 starburst galaxies at z~5-6, doubling the redshift range for such observations. These galaxies are spectroscopically confirmed in the Hubble Ultra Deep Field (HUDF) through the GRism ACS program for Extragalactic Science (GRAPES) project. The starburst intensity limit for galaxies at z~5-6 agree with those at z~3-4 and z~0 to within a factor of a few, after correcting for cosmological surface brightness dimming and for dust. The most natural interpretation of this constancy over cosmic time is that the same physical mechanisms limit starburst intensity at all redshifts up to z~6 (be they galactic winds, gravitational instability, or something else). We do see two trends with redshift: First, the UV spectral slope of galaxies at z~5-6 is bluer than that of z~3 galaxies, suggesting an increase in dust content over time. Second, the galaxy sizes from z~3 to z~6 scale approximately as the Hubble parameter 1/H(z). Thus, galaxies at z~6 are high redshift starbursts, much like their local analogs except for slightly bluer colors, smaller physical sizes, and correspondingly lower overall luminosities. If we now assume a constant maximum star formation intensity, the differences in observed surface brightness between z~0 and z~6 are consistent with standard expanding cosmology and strongly inconsistent with tired light model.Comment: Accepted for publication in ApJ (23 pages, 5 figures). Minor changes to tex

    The VIMOS Ultra Deep Survey: Lyα emission and stellar populations of star-forming galaxies at 2 < z < 2.5

    Get PDF
    The aim of this paper is to investigate spectral and photometric properties of 854 faint (i_(AB) ≲ 25 mag) star-forming galaxies (SFGs) at 2  0 Å), and Lyα emitters (LAEs; EW ≥ 20 Å). The fraction of LAEs at these redshifts is ~10%, which is consistent with previous observations. We compared best-fitSED-estimated stellar parameters of the SFG_N, SFG_L and LAE samples. For the luminosities probed here (~ L^∗), we find that galaxies with and without Lyα in emission have small but significant differences in their SED-based properties. We find that LAEs have less dust, and lower star-formation rates (SFR) compared to non-LAEs. We also find that LAEs are less massive compared to non-LAEs, though the difference is smaller and less significant compared to the SFR and Es(B−V). When we divide the LAEs according to their Spitzer/IRAC 3.6 μm fluxes, we find that the fraction of IRAC-detected (m_(3.6) ≲ 25 mag) LAEs is much higher than the fraction of IRAC-detected narrow band (NB)-selected LAEs at z ≃ 2–3. This could imply that UV-selected LAEs host a more evolved stellar population, which represents a later stage of galaxy evolution, compared to NB-selected LAEs

    The VIMOS Ultra Deep Survey: Lyα emission and stellar populations of star-forming galaxies at 2 < z < 2.5

    Get PDF
    The aim of this paper is to investigate spectral and photometric properties of 854 faint (i_(AB) ≲ 25 mag) star-forming galaxies (SFGs) at 2  0 Å), and Lyα emitters (LAEs; EW ≥ 20 Å). The fraction of LAEs at these redshifts is ~10%, which is consistent with previous observations. We compared best-fitSED-estimated stellar parameters of the SFG_N, SFG_L and LAE samples. For the luminosities probed here (~ L^∗), we find that galaxies with and without Lyα in emission have small but significant differences in their SED-based properties. We find that LAEs have less dust, and lower star-formation rates (SFR) compared to non-LAEs. We also find that LAEs are less massive compared to non-LAEs, though the difference is smaller and less significant compared to the SFR and Es(B−V). When we divide the LAEs according to their Spitzer/IRAC 3.6 μm fluxes, we find that the fraction of IRAC-detected (m_(3.6) ≲ 25 mag) LAEs is much higher than the fraction of IRAC-detected narrow band (NB)-selected LAEs at z ≃ 2–3. This could imply that UV-selected LAEs host a more evolved stellar population, which represents a later stage of galaxy evolution, compared to NB-selected LAEs

    Tracing Galaxy Assembly: Tadpole Galaxies in the Hubble Ultra Deep Field

    Full text link
    In the Hubble Ultra Deep Field (HUDF) an abundance of galaxies is seen with a knot at one end plus an extended tail, resembling a tadpole. These "tadpole galaxies" appear dynamically unrelaxed--presumably in an early merging state--where tidal interactions likely created the distorted knot-plus-tail morphology. Here we systematically select tadpole galaxies from the HUDF and study their properties as a function of their photometric redshifts. In a companion HUDF variability study, Cohen et al. (2005) revealed a total of 45 variable objects believed to be Active Galactic Nuclei (AGN). Here we show that this faint AGN sample has no overlap with the tadpole galaxy sample, as predicted by theoretical work. The tadpole morphology--combined with the lack of overlap with the variable objects--supports the idea that these galaxies are in the process of an early-stage merger event, i.e., at a stage that likely precedes the "turn-on" of any AGN component and the onset of any point-source variability.Comment: 7 pages, 4 figures. Accepted for publication by Astrophysical Journa

    Emission-Line Galaxies from the HST PEARS Grism Survey I: The South Fields

    Full text link
    We present results of a search for emission-line galaxies in the Southern Fields of the Hubble Space Telescope PEARS (Probing Evolution And Reionization Spectroscopically) grism survey. The PEARS South Fields consist of five ACS pointings (including the Hubble Ultra Deep Field) with the G800L grism for a total of 120 orbits, revealing thousands of faint object spectra in the GOODS-South region of the sky. Emission-line galaxies (ELGs) are one subset of objects that are prevalent among the grism spectra. Using a 2-dimensional detection and extraction procedure, we find 320 emission lines orginating from 226 galaxy "knots'' within 192 individual galaxies. Line identification results in 118 new grism-spectroscopic redshifts for galaxies in the GOODS-South Field. We measure emission line fluxes using standard Gaussian fitting techniques. At the resolution of the grism data, the H-beta and [OIII] doublet are blended. However, by fitting two Gaussian components to the H-beta and [OIII] features, we find that many of the PEARS ELGs have high [OIII]/H-beta ratios compared to other galaxy samples of comparable luminosities. The star-formation rates (SFRs) of the ELGs are presented, as well as a sample of distinct giant star-forming regions at z~0.1-0.5 across individual galaxies. We find that the radial distances of these HII regions in general reside near the galaxies' optical continuum half-light radii, similar to those of giant HII regions in local galaxies.Comment: 15 pages, 13 figures; Accepted for publication in A

    Dust extinction from Balmer decrements of star-forming galaxies at 0.75<z<1.5 with HST/WFC3 spectroscopy from the WISP survey

    Get PDF
    Spectroscopic observations of Halpha and Hbeta emission lines of 128 star-forming galaxies in the redshift range 0.75<z<1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel (WISP) survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (Halpha/Hbeta). We present dust extinction as a function of Halpha luminosity (down to 3 x 10^{41} erg/s), galaxy stellar mass (reaching 4 x 10^{8} Msun), and rest-frame Halpha equivalent width. The faintest galaxies are two times fainter in Halpha luminosity than galaxies previously studied at z~1.5. An evolution is observed where galaxies of the same Halpha luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower Halpha luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [OIII]5007/Halpha flux ratio as a function of luminosity where galaxies with L_{Halpha}<5 x 10^{41} erg/s are brighter in [OIII]5007 than Halpha. This trend is evident even after extinction correction, suggesting that the increased [OIII]5007/Halpha ratio in low luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.Comment: 11 pages, 9 figures, 2 tables; version addressing the referee comment

    Constraining the Distribution of L- & T-Dwarfs in the Galaxy

    Full text link
    We estimate the thin disk scale height of the Galactic population of L- & T-dwarfs based on star counts from 15 deep parallel fields from the Hubble Space Telescope. From these observations, we have identified 28 candidate L- & T- dwarfs based on their (i'-z') color and morphology. By comparing these star counts to a simple Galactic model, we estimate the scale height to be 350+-50 pc that is consistent with the increase in vertical scale with decreasing stellar mass and is independent of reddening, color-magnitude limits, and other Galactic parameters. With this refined measure, we predict that less than 10^9 M_{sol} of the Milky Way can be in the form L- & T- dwarfs, and confirm that high-latitude, z~6 galaxy surveys which use the i'-band dropout technique are 97-100% free of L- & T- dwarf interlopers.Comment: 4 pages, 4 figures, accepted to ApJ

    A Self-consistent Model for Brown Dwarf Populations

    Get PDF
    We present a self-consistent model of the Milky Way to reproduce the observed distributions (spectral type, absolute J-band magnitude, effective temperature) and total velocity dispersion of brown dwarfs. For our model, we adopt parametric forms for the star formation history and initial-mass function, published evolutionary models, and theoretical age–velocity relations. Using standard Markov Chain Monte Carlo methods, we derive a power-law index of the initial-mass function of α = −0.71 ± 0.11, which is an improvement over previous studies. We consider a gamma-function form for the star formation history, though we find that this complex model is only slightly favored over a declining exponential. We find that a velocity variance that linearly increases with age and has an initial value of km s−1 best reproduces the total velocity dispersions. Given the similarities to main-sequence stars, this suggests brown dwarfs likely form via similar processes, but we recognize that the sizable uncertainties on σ0 preclude firm conclusions. To further refine these conclusions, we suggest that wide-field infrared imaging or low-resolution spectroscopic surveys, such as with the Nancy Grace Roman Space Telescope or Euclid, could provide large samples of brown dwarfs with robust spectral types that could probe the thickness of the thin disk. In this way, the number counts and population demographics could probe the same physical processes as with the kinematic measurements, however may provide larger samples and be subject to different selection biases

    Stellar Populations of Lyman Break Galaxies at z=1-3 in the HST/WFC3 Early Release Science Observations

    Full text link
    We analyze the spectral energy distributions (SEDs) of Lyman break galaxies (LBGs) at z=1-3 selected using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS channel filters. These HST/WFC3 observations cover about 50 sq. arcmin in the GOODS-South field as a part of the WFC3 Early Release Science program. These LBGs at z=1-3 are selected using dropout selection criteria similar to high redshift LBGs. The deep multi-band photometry in this field is used to identify best-fit SED models, from which we infer the following results: (1) the photometric redshift estimate of these dropout selected LBGs is accurate to within few percent; (2) the UV spectral slope (beta) is redder than at high redshift (z>3), where LBGs are less dusty; (3) on average, LBGs at z=1-3 are massive, dustier and more highly star-forming, compared to LBGs at higher redshifts with similar luminosities (0.1L*<~L<~2.5L*), though their median values are similar within 1-sigma uncertainties. This could imply that identical dropout selection technique, at all redshifts, find physically similar galaxies; and (4) stellar masses of these LBGs are directly proportional to their UV luminosities with a logarithmic slope of ~0.46, and star-formation rates are proportional to their stellar masses with a logarithmic slope of ~0.90. These relations hold true --- within luminosities probed in this study --- for LBGs from z~1.5 to 5. The star-forming galaxies selected using other color-based techniques show similar correlations at z~2, but to avoid any selection biases, and for direct comparison with LBGs at z>3, a true Lyman break selection at z~2 is essential. The future HST UV surveys, both wider and deeper, covering a large luminosity range are important to better understand LBG properties, and their evolution.Comment: Accepted for publication in ApJ (29 pages, 9 figures

    Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329

    Full text link
    We present early observations of the afterglow of the Gamma-Ray Burst (GRB) 030329 and the spectroscopic discovery of its associated supernova SN 2003dh. We obtained spectra of the afterglow of GRB 030329 each night from March 30.12 (0.6 days after the burst) to April 8.13 (UT) (9.6 days after the burst). The spectra cover a wavelength range of 350 nm to 850 nm. The early spectra consist of a power-law continuum (F_nu ~ nu^{-0.9}) with narrow emission lines originating from HII regions in the host galaxy, indicating a low redshift of z=0.1687. However, our spectra taken after 2003 Apr. 5 show broad peaks in flux characteristic of a supernova. Correcting for the afterglow emission, we find the spectrum of the supernova is remarkably similar to the type Ic `hypernova' SN 1998bw. While the presence of supernovae have been inferred from the light curves and colors of GRB afterglows in the past, this is the first direct, spectroscopic confirmation that a subset of classical gamma-ray bursts originate from supernovae.Comment: published by ApJ Letters; additional material avilable at http://cfa-www.harvard.edu/cfa/oir/Research/GRB
    • …
    corecore