128 research outputs found

    描かれた水口祭り・焼米搗き

    Get PDF

    Detection of radiation torque exerted on an alkali-metal vapor cell

    Get PDF
    We have developed a torsion balance to detect the rotation of a cell containing spin-polarized gaseous atoms to study angular momentum transfer from gaseous atoms to solid. A cesium vapor cell was hung from a thin wire in a vacuum chamber, and irradiated from the bottom with circularly polarized light tuned to the D2D_2 transition to polarize cesium atoms in the cell. By varying the light helicity at the resonance frequency of the torsion balance, we induced forced rotational oscillation of the cell and detected radiation torque exerted on the cesium vapor cell through the cesium atoms inside. The torque was particularly large when both hyperfine levels of cesium atoms were optically pumped with application of a longitudinal magnetic field. Further detailed study will provide new insights into spin-transfer processes at the gas-solid interface.Comment: 11 pages, 4 figure

    Fibulin-5 Contributes to Microfibril Assembly in Human Periodontal Ligament Cells

    Get PDF
    The elastic system fibers comprise oxytalan, elaunin and elastic fibers, which differ in their relative microfibril and elastin content. Human periodontal ligaments (PDL) contain only oxytalan fibers (pure microfibrils) among them. Since fibulin-5 regulates the organization of elastic fibers to link the fibers to cells, we hypothesized that fibulin-5 may contribute to the formation of oxytalan fibers. We used siRNA for fibulin-5 in PDL cell culture to examine the extracellular deposition of fibrillin-1 and -2, which are the major components of microfibrils. Fibulin-5 was labeled on microfibrils positive for fibrillin-1 and -2. Fibulin-5 suppression reduced the level of fibrillin-1 and -2 deposition to 60% of the control level. These results suggest that fibulin-5 may control the formation of oxytalan fibers, and play a role in the homeostasis of oxytalan fibers

    Interfamily Transfer of Dual NB-LRR Genes Confers Resistance to Multiple Pathogens

    Get PDF
    A major class of disease resistance (R) genes which encode nucleotide binding and leucine rich repeat (NB-LRR) proteins have been used in traditional breeding programs for crop protection. However, it has been difficult to functionally transfer NB-LRR-type R genes in taxonomically distinct families. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and Brassica napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lycopersicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Importantly, RPS4/RRS1 transgenic plants show no autoimmune phenotypes, indicating that the NB-LRR proteins are tightly regulated. The successful transfer of two R genes at the family level implies that the downstream components of R genes are highly conserved. The functional interfamily transfer of R genes can be a powerful strategy for providing resistance to a broad range of pathogens

    Novel protein extraction approach using micro-sized chamber for evaluation of proteins eluted from formalin-fixed paraffin-embedded tissue sections

    Get PDF
    We describe a novel antigen-retrieval method using a micro-sized chamber for mass spectrometry (MS) analysis to identify proteins that are preferentially eluted from formalin-fixed paraffin-embedded (FFPE) samples. This approach revealed that heat-induced antigen retrieval (HIAR) from an FFPE sample fixed on a glass slide not only improves protein identification, but also facilitates preferential elution of protein subsets corresponding to the properties of antigen-retrieval buffers. Our approach may contribute to an understanding of the mechanism of HIAR

    Propofol-induced vasodilation and aging

    Get PDF
    Background : Propofol causes vasodilation via endothelium-dependent and -independent mechanisms. Because endothelial function is impaired with aging, the effects of propofol on endothelium-dependent vasodilation might be altered by aging. The aim of this study was thus to determine the effects of aging on vascular responses to propofol. Methods : Young (4-6 weeks old) or adult (16-25 weeks old) rats were anesthetized with sevoflurane. The thoracic aorta was dissected and cut into pieces 3-4mm in length. In some rings, the endothelium was deliberately removed. The ring segment of the aorta was mounted for isometric force recording at a resting tension of 0.5-1.0 g in a 2 ml organ bath, containing Krebs-Ringer bicarbonate buffer. Arteries were precontracted with phenylephrine, and the function of endothelium was confirmed with acetylcholine. Then, we studied the concentration-dependent effects of propofol in endothelium-intact (control group) and -denuded aortic rings (denuded group), as well as those treated with N[ω]-nitro-L-arginine methylester (L-NAME group). Results : Relaxation due to propofol was observed in the control groups of both young and adult rats in a concentration-dependent manner, but the magnitude of relaxation was significantly greater in young rats. In addition, in young rats, relaxation due to propofol was significantly and equally reduced in both L-NAME and denuded groups at all propofol concentrations that we studied (10[-6]-10[-3] M). In adult rats, relaxation due to propofol was quite similar between control and L-NAME groups at all propofol concentrations, whereas it was significantly reduced in the denuded group. Conclusion : These results suggest that endothelium-derived nitric oxide plays an important role in propofol-induced vasodilation in young rats, but not in adult rats

    Altered KYN/TRP, Gln/Glu, and Met/methionine sulfoxide ratios in the blood plasma of medication-free patients with major depressive disorder

    Get PDF
    Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) is a comprehensive, quantitative, and high throughput tool used to analyze metabolite profiles. In the present study, we used CE-TOFMS to profile metabolites found in the blood plasma of 33 medication-free patients with major depressive disorder (MDD) and 33 non-psychiatric control subjects. We then investigated changes which occurred in the metabolite levels during an 8-week treatment period. The medication-free MDD patients and control subjects showed significant differences in their mean levels of 33 metabolites, including kynurenine (KYN), glutamate (Glu), glutamine (Gln), methionine sulfoxide, and methionine (Met). In particular, the ratios of KYN to tryptophan (TRP), Gln to Glu, and Met to methionine sulfoxide were all significantly different between the two groups. Among the 33 metabolites with altered levels in MDD patients, the levels of KYN and Gln, as well as the ratio of Gln to Glu, were significantly normalized after treatment. Our findings suggest that imbalances in specific metabolite levels may be involved in the pathogenesis of MDD, and provide insight into the mechanisms by which antidepressant agents work in MDD patients
    corecore