62 research outputs found

    Characterization of human UGT2A3 expression using a prepared specific antibody against UGT2A3

    Get PDF
    UDP-Glucuronosyltransferase (UGT) 2A3 belongs to a UGT superfamily of phase II drug-metabolizing enzymes that catalyzes the glucuronidation of many endobiotics and xenobiotics. Previous studies have demonstrated that UGT2A3 is expressed in the human liver, small intestine, and kidney at the mRNA level; however, its protein expression has not been determined. Evaluation of the protein expression of UGT2A3 would be useful to determine its role at the tissue level. In this study, we prepared a specific antibody against human UGT2A3 and evaluated the relative expression of UGT2A3 in the human liver, small intestine, and kidney. Western blot analysis indicated that this antibody is specific to UGT2A3 because it did not cross-react with other human UGT isoforms or rodent UGTs. UGT2A3 expression in the human small intestine was higher than that in the liver and kidney. Via treatment with endoglycosidase, it was clearly demonstrated that UGT2A3 was N-glycosylated. UGT2A3 protein levels were significantly correlated with UGT2A3 mRNA levels in a panel of 28 human liver samples (r = 0.64, p <0.001). In conclusion, we successfully prepared a specific antibody against UGT2A3. This antibody would be useful to evaluate the physiological, pharmacological, and toxicological roles of UGT2A3 in human tissues. (C) 2019 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    High Dietary Fat Intake during Lactation Promotes the Development of Social Stress-Induced Obesity in the Offspring of Mice

    No full text
    This study examined how a maternal high-fat diet (HD) during lactation and exposure of offspring to isolation stress influence the susceptibility of offspring to the development of obesity. C57BL/6J mice were fed a commercial diet (CD) during pregnancy and a CD or HD during lactation. Male offspring were weaned at three weeks of age, fed a CD until seven weeks of age, and fed a CD or HD until 11 weeks of age. Offspring were housed alone (isolation stress) or at six per cage (ordinary circumstances). Thus, offspring were assigned to one of eight groups: dams fed a CD or HD during lactation and offspring fed a CD or HD and housed under ordinary circumstances or isolation stress. Serum corticosterone level was significantly elevated by isolation stress. High-fat feeding of offspring reduced their serum corticosterone level, which was significantly elevated by a maternal HD. A maternal HD and isolation stress had combined effects in elevating the serum corticosterone level. These findings suggest that a maternal HD during lactation enhances the stress sensitivity of offspring. White adipose tissue weights were significantly increased by a maternal HD and isolation stress and by their combination. In addition, significant adipocyte hypertrophy was induced by a maternal HD and isolation stress and exacerbated by their combination. Thus, a maternal HD and isolation stress promote visceral fat accumulation and adipocyte hypertrophy, accelerating the progression of obesity through their combined effects. The mechanism may involve enhanced fatty acid synthesis and lipid influx from blood into adipose tissue. These findings demonstrate that a maternal HD during lactation may increase the susceptibility of offspring to the development of stress-induced obesity

    Regeneration of Fully-discharged Graphite-Fluoride Lithium Primary Battery as Electrochemical Capacitor

    No full text
    This paper reports that the fully-discharged graphite-fluoride Li primary battery (GF/Li battery) can be regenerated as a hybrid capacitor with a higher energy density than the electric double layer capacitor (EDLC) using an activated carbon electrode. The graphite-fluoride (GF) positive electrode of the GF/Li battery is electrochemically defluorinated during the fully-discharged process to be converted to a nanocomposite consisting of carbon and LiF particles. The nanocomposite as the discharge product behaves as a capacitor-like electrode, so the fully-discharged GF/Li battery can be stably charged/discharged as a hybrid capacitor with the capacitor-type electrode (defluorinated GF electrode) and the battery-type negative electrode (Li metal). This hybrid capacitor, i.e., “graphite-fluoride Li capacitor (GF/Li capacitor)”, exhibited the maximum volumetric energy density of 52 Wh L−1 (at the power density of 71 W L−1), which is higher than that of the EDLC and comparable to that of the Li-ion capacitor. In this paper, the improvement of the cyclability by using the graphite/Li bilayer negative electrode and the charge-discharge mechanism are also discussed for the GF/Li capacitor

    Azaboradibenzo[6]helicene: Carrier Inversion Induced by Helical Homochirality

    No full text
    Azaboradibenzo­[6]­helicene, a new semiconductor material possessing helical chirality, has been synthesized via a tandem bora-Friedel–Crafts-type reaction. Unprecedented carrier inversion between the racemate (displaying p-type semiconductivity) and the single enantiomer (displaying n-type semiconductivity) was observed and can be explained by changes in the molecular packing induced by helical homochirality

    Azaboradibenzo[6]helicene: Carrier Inversion Induced by Helical Homochirality

    No full text
    Azaboradibenzo­[6]­helicene, a new semiconductor material possessing helical chirality, has been synthesized via a tandem bora-Friedel–Crafts-type reaction. Unprecedented carrier inversion between the racemate (displaying p-type semiconductivity) and the single enantiomer (displaying n-type semiconductivity) was observed and can be explained by changes in the molecular packing induced by helical homochirality

    Azaboradibenzo[6]helicene: Carrier Inversion Induced by Helical Homochirality

    No full text
    Azaboradibenzo­[6]­helicene, a new semiconductor material possessing helical chirality, has been synthesized via a tandem bora-Friedel–Crafts-type reaction. Unprecedented carrier inversion between the racemate (displaying p-type semiconductivity) and the single enantiomer (displaying n-type semiconductivity) was observed and can be explained by changes in the molecular packing induced by helical homochirality

    Multiple Wheat Genomes Reveal Novel Gli-2 Sublocus Location and Variation of Celiac Disease Epitopes in Duplicated α-Gliadin Genes

    Full text link
    The seed protein α-gliadin is a major component of wheat flour and causes gluten-related diseases. However, due to the complexity of this multigene family with a genome structure composed of dozens of copies derived from tandem and genome duplications, little was known about the variation between accessions, and thus little effort has been made to explicitly target α-gliadin for bread wheat breeding. Here, we analyzed genomic variation in α-gliadins across 11 recently published chromosome-scale assemblies of hexaploid wheat, with validation using long-read data. We unexpectedly found that the Gli-B2 locus is not a single contiguous locus but is composed of two subloci, suggesting the possibility of recombination between the two during breeding. We confirmed that the number of immunogenic epitopes among 11 accessions varied. The D subgenome of a European spelt line also contained epitopes, in agreement with its hybridization history. Evolutionary analysis identified amino acid sites under diversifying selection, suggesting their functional importance. The analysis opens the way for improved grain quality and safety through wheat breeding
    corecore