5 research outputs found

    Increased Levels of Leukocyte-Derived MMP-9 in Patients with Stable Angina Pectoris

    Get PDF
    Objective: There is a growing interest for matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in plasma as novel biomarkers in coronary artery disease (CAD). We aimed to identify the sources of MMP-8, MMP-9, TIMP-1 and TIMP-2 among peripheral blood cells and further explore whether gene expression or protein release was altered in patients with stable angina pectoris (SA). Methods: In total, plasma MMP-9 was measured in 44 SA patients and 47 healthy controls. From 10 patients and 10 controls, peripheral blood mononuclear cells (PBMC) and neutrophils were isolated and stimulated ex vivo. MMPs, TIMPs and myeloperoxidase were measured in plasma and supernatants by ELISA. The corresponding gene expression was measured by real-time PCR. Results: Neutrophils were the dominant source of MMP-8 and MMP-9. Upon moderate stimulation with IL-8, the neutrophil release of MMP-9 was higher in the SA patients compared with controls (p,0.05). In PBMC, the TIMP-1 and MMP-9 mRNA expression was higher in SA patients compared with controls, p,0.01 and 0.05, respectively. There were no differences in plasma levels between patients and controls except for TIMP-2, which was lower in patients, p,0.01. Conclusion: Measurements of MMPs and TIMPs in plasma may be of limited use. Despite similar plasma levels in SA patients and controls, the leukocyte-derived MMP-9 and TIMP-1 are significantly altered in patients. The findings indicate that th

    Structural and functional characterization of tissue factor pathway inhibitor following degradation by matrix metalloproteinase-8.

    No full text
    Vascular injury results in the activation of coagulation and the release of proteolytic enzymes from neutrophils and connective- tissue cells. High concentrations of these inflammatory proteinases may destroy blood coagulation proteins, contributing to coagulation and bleeding disorders associated with severe inflammation. Matrix metalloproteinase-8 (MMP-8) is released from neutrophils at sites of inflammation and vascular disease. We have investigated the effect of MMP-8 degradation on the anticoagulant function of tissue factor pathway inhibitor (TFPI) as a potential pathological mechanism contributing to coagulation disorders. MMP-8 cleaves TFPI following Ser(174) within the connecting region between the second and third Kunitz domains ( k (cat)/ K (m) approximately 75 M(-1).s(-1)) as well as following Lys(20) within the NH(2)-terminal region. MMP-8 cleavage of TFPI decreases the anticoagulant activity of TFPI in factor Xa initiated clotting assays as well as the ability of TFPI to inhibit factor Xa in amidolytic assays. Yet, MMP-8 cleavage does not alter the ability of TFPI to inhibit trypsin. Since the inhibition of both factor Xa and trypsin is mediated by binding to the second Kunitz domain, these results suggest that regions of TFPI other than the second Kunitz domain may directly interact with factor Xa. (125)I-factor Xa ligand blots of TFPI fragments generated following MMP-8 degradation were used for probing binding interactions between factor Xa and regions of TFPI, other than the second Kunitz domain. In experiments performed under reducing conditions that disrupt the Kunitz domain structure, (125)I-factor Xa binds to the C-terminal fragment of MMP-8-degraded TFPI. This fragment contains portions of TFPI distal to Ser(174), which include the third Kunitz domain and the basic C-terminal region. An altered form of TFPI lacking the third Kunitz domain, but containing the C-terminal region, was used to demonstrate that the C-terminal region directly interacts with factor Xa

    Outcomes of critically ill solid organ transplant patients with COVID‐19 in the United States

    No full text
    corecore