5,552 research outputs found

    Performance characteristics of a 1.8 by 3.7 meter Fresnel lens solar concentrator

    Get PDF
    Line-focusing acrylic Fresnel lenses with application potential in the 200 to 370 C range were analytically and experimentally investigated. The measured solar concentration characteristics of a 1.8 by 3.7 m lens and its utilization in a solar collection mode are presented. A measured peak concentration ratio of 62 with 90 percent of the transmitted energy focused into a 5.0cm width was achieved. A peak concentration of 59 and a 90 percent target width of 4.3 cm were analytically computed. The experimental and analytical lens transmittance was 78 percent and 86 percent, respectively. The lens was also interfaced with a nonevacuated receiver assembly and operated in the collection mode. With a natural oxide absorber tube coating (alpha/epsilon = 0.79/0.10), the measured collection efficiency ranged from 43 percent to 200 C to 34 percent at 260 C. Efficiency improvements to the 40 to 50 percent range can be achieved with second generation lenses and higher performance absorptive coatings

    An analytical and experimental investigation of a 1.8 by 3.7 meter Fresnel lens solar concentrator

    Get PDF
    Line-focusing acrylic Fresnel lenses with application potential in the 200 to 370 C range are being analytically and experimentally evaluated. Investigations previously conducted with a 56 cm wide lens have been extended by the present study to experimentation/analyses with a 1.8 by 3.7 m lens. A measured peak concentration ratio of 64 with 90 percent of the transmitted energy focused into a 5.0 cm width was achieved. A peak concentration of 61 and a 90 percent target width of 4.5 cm were analytically computed. The experimental and analytical lens transmittance was 81 percent and 86 percent, respectively. The lens also was interfaced with a receiver assembly and operated in the collection mode. The collection efficiency ranged from 42 percent at 100 C to 26 percent at 300 C

    An analytical and experimental evaluation of a Fresnel lens solar concentrator

    Get PDF
    An analytical and experimental evaluation of line focusing Fresnel lenses with application potential in the 200 to 370 C range was studied. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves down lens. Experimentation was based on a 56 cm wide, f/1.0 lens. A Sun tracking heliostat provided a nonmoving solar source. Measured data indicated more spreading at the profile base than analytically predicted, resulting in a peak concentration 18 percent lower than the computed peak of 57. The measured and computed transmittances were 85 and 87 percent, respectively. Preliminary testing with a subsequent lens indicated that modified manufacturing techniques corrected the profile spreading problem and should enable improved analytical experimental correlation

    A triple cavity ammonia maser.

    Get PDF

    Cryogenic fluid transfer - orbital transfer vehicle

    Get PDF
    Fluid transfer requirements are presented for the orbital transfer vehicle (OTV) issues such as OTV configuration, hardware design and size are taken into consideration. Tank chilldown, tank fill and thermodynamic properties are all evaluated in relationship to fluid transfer needs

    Fractal to Nonfractal Phase Transition in the Dielectric Breakdown Model

    Full text link
    A fast method is presented for simulating the dielectric-breakdown model using iterated conformal mappings. Numerical results for the dimension and for corrections to scaling are in good agreement with the recent RG prediction of an upper critical ηc=4\eta_c=4, at which a transition occurs between branching fractal clusters and one-dimensional nonfractal clusters.Comment: 5 pages, 7 figures; corrections to scaling include

    Community Detection as an Inference Problem

    Full text link
    We express community detection as an inference problem of determining the most likely arrangement of communities. We then apply belief propagation and mean-field theory to this problem, and show that this leads to fast, accurate algorithms for community detection.Comment: 4 pages, 2 figure

    Liquid Acquisition Device Design Sensitivity Study

    Get PDF
    In-space propulsion often necessitates the use of a capillary liquid acquisition device (LAD) to assure that gas-free liquid propellant is available to support engine restarts in microgravity. If a capillary screen-channel device is chosen, then the designer must determine the appropriate combination screen mesh and channel geometry. A screen mesh selection which results in the smallest LAD width when compared to any other screen candidate (for a constant length) is desirable; however, no best screen exists for all LAD design requirements. Flow rate, percent fill, and acceleration are the most influential drivers for determining screen widths. Increased flow rates and reduced percent fills increase the through-the-screen flow pressure losses, which drive the LAD to increased widths regardless of screen choice. Similarly, increased acceleration levels and corresponding liquid head pressures drive the screen mesh selection toward a higher bubble point (liquid retention capability). After ruling out some screens on the basis of acceleration requirements alone, candidates can be identified by examining screens with small flow-loss-to-bubble point ratios for a given condition (i.e., comparing screens at certain flow rates and fill levels). Within the same flow rate and fill level, the screen constants inertia resistance coefficient, void fraction, screen pore or opening diameter, and bubble point can become the driving forces in identifying the smaller flow-loss-to-bubble point ratios

    Characteristics of Subcooled Liquid Methane During Passage Through a Spray-Bar Joule-Thompson Thermodynamic Vent System

    Get PDF
    NASA s Marshall Space Flight Center (MSFC) conducted liquid methane (LCH4) testing in November 2006 using the multipurpose hydrogen test bed (MHTB) outfitted with a spray-bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with subcooled LCH4 that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 W to 420 W at a fill level of approximately 90%. During an updated evaluation of the data, it was noted that as the fluid passed through the Joule Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This paper describes the observed thermodynamic conditions that correspond with metastability and effects on TVS performance
    • …
    corecore