3,633 research outputs found

    Spin-Orbit Scattering and Time-Reversal Symmetry: Detection of a Spin by Tunneling

    Full text link
    We consider the possibility of detecting spin precession in a magnetic field by nonequilibrium transport processes. We find that time reversal symmetry imposes strong constraints on the problem. Suppose the tunneling occurs directly between systems at two different chemical potentials, rather than sequentially via a third system at an intermediate chemical potential. Then, unless the magnetic fields are extremely strong or spin polarized electrons are used, the periodic signal in the current results from beating together two different precession frequencies, so that observing a signal near the Larmor frequency in this case requires having some cluster with a gg factor close to zero.Comment: 4 pages, 1 figur

    Random Vibrational Networks and Renormalization Group

    Full text link
    We consider the properties of vibrational dynamics on random networks, with random masses and spring constants. The localization properties of the eigenstates contrast greatly with the Laplacian case on these networks. We introduce several real-space renormalization techniques which can be used to describe this dynamics on general networks, drawing on strong disorder techniques developed for regular lattices. The renormalization group is capable of elucidating the localization properties, and provides, even for specific network instances, a fast approximation technique for determining the spectra which compares well with exact results.Comment: 4 pages, 3 figure

    Human Security Workers Deployed in Austere Environments: a Brief Guide to Self-Care, Sustainment, and Productivity

    Get PDF
    Since the early 1990s, the human security movement has sought to expand the concept of security beyond the traditional military defense of national borders to focus on the intra-state security needs of populations at the individual level. Specific initiatives frequently address problems of population health, ethnic conflict, religious extremism, human rights, environmental or natural disasters, and other critical issues. For expatriate human security workers in the field, the environment may present meaningful challenges to their wellbeing and productivity. This can be especially so for those who have relatively more experience in academic, business, or administrative settings, and less in the field. The authors' goal is to illuminate practices that have demonstrated their efficacy in enhancing wellness, sustainment, and productivity for human security and other humanitarian and development workers deployed to austere environments. The content represents a synoptic consensus of best general practices and guidance from a range of resources comprising United Nations agencies and activities, national and international non-governmental organizations (NGO's), private volunteer organ­izations (PVO's), national military services, and international business concerns

    Bose Glass in Large N Commensurate Dirty Boson Model

    Full text link
    The large N commensurate dirty boson model, in both the weakly and strongly commensurate cases, is considered via a perturbative renormalization group treatment. In the weakly commensurate case, there exists a fixed line under RG flow, with varying amounts of disorder along the line. Including 1/N corrections causes the system to flow to strong disorder, indicating that the model does not have a phase transition perturbatively connected to the Mott Insulator-Superfluid (MI-SF) transition. I discuss the qualitative effects of instantons on the low energy density of excitations. In the strongly commensurate case, a fixed point found previously is considered and results are obtained for higher moments of the correlation functions. To lowest order, correlation functions have a log-normal distribution. Finally, I prove two interesting theorems for large N vector models with disorder, relevant to the problem of replica symmetry breaking and frustration in such systems.Comment: 16 pages, 7 figure

    Exponential Decay of Correlations Implies Area Law

    Full text link
    We prove that a finite correlation length, i.e. exponential decay of correlations, implies an area law for the entanglement entropy of quantum states defined on a line. The entropy bound is exponential in the correlation length of the state, thus reproducing as a particular case Hastings proof of an area law for groundstates of 1D gapped Hamiltonians. As a consequence, we show that 1D quantum states with exponential decay of correlations have an efficient classical approximate description as a matrix product state of polynomial bond dimension, thus giving an equivalence between injective matrix product states and states with a finite correlation length. The result can be seen as a rigorous justification, in one dimension, of the intuition that states with exponential decay of correlations, usually associated with non-critical phases of matter, are simple to describe. It also has implications for quantum computing: It shows that unless a pure state quantum computation involves states with long-range correlations, decaying at most algebraically with the distance, it can be efficiently simulated classically. The proof relies on several previous tools from quantum information theory - including entanglement distillation protocols achieving the hashing bound, properties of single-shot smooth entropies, and the quantum substate theorem - and also on some newly developed ones. In particular we derive a new bound on correlations established by local random measurements, and we give a generalization to the max-entropy of a result of Hastings concerning the saturation of mutual information in multiparticle systems. The proof can also be interpreted as providing a limitation on the phenomenon of data hiding in quantum states.Comment: 35 pages, 6 figures; v2 minor corrections; v3 published versio

    An area law for entanglement from exponential decay of correlations

    Get PDF
    Area laws for entanglement in quantum many-body systems give useful information about their low-temperature behaviour and are tightly connected to the possibility of good numerical simulations. An intuition from quantum many-body physics suggests that an area law should hold whenever there is exponential decay of correlations in the system, a property found, for instance, in non-critical phases of matter. However, the existence of quantum data-hiding state--that is, states having very small correlations, yet a volume scaling of entanglement--was believed to be a serious obstruction to such an implication. Here we prove that notwithstanding the phenomenon of data hiding, one-dimensional quantum many-body states satisfying exponential decay of correlations always fulfil an area law. To obtain this result we combine several recent advances in quantum information theory, thus showing the usefulness of the field for addressing problems in other areas of physics.Comment: 8 pages, 3 figures. Short version of arXiv:1206.2947 Nature Physics (2013

    Cosmological Parameters from a re-analysis of the WMAP-7 low resolution maps

    Full text link
    Cosmological parameters from WMAP 7 year data are re-analyzed by substituting a pixel-based likelihood estimator to the one delivered publicly by the WMAP team. Our pixel based estimator handles exactly intensity and polarization in a joint manner, allowing to use low-resolution maps and noise covariance matrices in T,Q,UT,Q,U at the same resolution, which in this work is 3.6^\circ. We describe the features and the performances of the code implementing our pixel-based likelihood estimator. We perform a battery of tests on the application of our pixel based likelihood routine to WMAP publicly available low resolution foreground cleaned products, in combination with the WMAP high-\ell likelihood, reporting the differences on cosmological parameters evaluated by the full WMAP likelihood public package. The differences are not only due to the treatment of polarization, but also to the marginalization over monopole and dipole uncertainties implemented in the WMAP 7 year pixel likelihood code for temperature. The credible central value for the cosmological parameters change below the 1 σ\sigma level with respect to the evaluation by the full WMAP 7 year likelihood code, with the largest difference in a shift to smaller values of the scalar spectral index nSn_S.Comment: Revised to match the version on press in MNRAS. Different interpretation of differences vs WMAP 7. 10 pages, 6 tables, 8 figure

    Quasi-adiabatic Continuation of Quantum States: The Stability of Topological Ground State Degeneracy and Emergent Gauge Invariance

    Full text link
    We define for quantum many-body systems a quasi-adiabatic continuation of quantum states. The continuation is valid when the Hamiltonian has a gap, or else has a sufficiently small low-energy density of states, and thus is away from a quantum phase transition. This continuation takes local operators into local operators, while approximately preserving the ground state expectation values. We apply this continuation to the problem of gauge theories coupled to matter, and propose a new distinction, perimeter law versus "zero law" to identify confinement. We also apply the continuation to local bosonic models with emergent gauge theories. We show that local gauge invariance is topological and cannot be broken by any local perturbations in the bosonic models in either continuous or discrete gauge groups. We show that the ground state degeneracy in emergent discrete gauge theories is a robust property of the bosonic model, and we argue that the robustness of local gauge invariance in the continuous case protects the gapless gauge boson.Comment: 15 pages, 6 figure

    Violation of area-law scaling for the entanglement entropy in spin 1/2 chains

    Full text link
    Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nearest neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half chain. Our result is complementary to the known relation between non-translational invariant, nearest neighbor interacting Hamiltonians and QMA complete problems.Comment: 9 pages, 4 figure
    corecore