2,210 research outputs found
Compensatory responses to insulin resistance in obese A frican‐ A merican and L atina girls
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101770/1/ijpo184.pd
A Bayesian test for the appropriateness of a model in the biomagnetic inverse problem
This paper extends the work of Clarke [1] on the Bayesian foundations of the
biomagnetic inverse problem. It derives expressions for the expectation and
variance of the a posteriori source current probability distribution given a
prior source current probability distribution, a source space weight function
and a data set. The calculation of the variance enables the construction of a
Bayesian test for the appropriateness of any source model that is chosen as the
a priori infomation. The test is illustrated using both simulated
(multi-dipole) data and the results of a study of early latency processing of
images of human faces.
[1] C.J.S. Clarke. Error estimates in the biomagnetic inverse problem.
Inverse Problems, 10:77--86, 1994.Comment: 13 pages, 16 figures. Submitted to Inverse Problem
Untwisting of a cholesteric elastomer by a mechanical field
A mechanical strain field applied to a monodomain cholesteric elastomer will
unwind the helical director distribution. There is an analogy with the
classical problem of an electric field applied to a cholesteric liquid crystal,
but with important differences. Frank elasticity is of minor importance unless
the gel is very weak. The interplay is between director anchoring to the rubber
elastic matrix and the external mechanical field. Stretching perpendicular to
the helix axis induces the uniform unwound state via the elimination of sharp,
pinned twist walls above a critical strain. Unwinding through conical director
states occurs when the elastomer is stretched along the helical axis.Comment: 4 pages, RevTeX 3 style, 3 EPS figure
Imprinted Networks as Chiral Pumps
We investigate the interaction between a chirally imprinted network and a
solvent of chiral molecules. We find, a liquid crystalline polymer network is
preferentially swollen by one component of a racemic solvent. This ability to
separate is linked to the chiral order parameter of the network, and can be
reversibly controlled via temperature or a mechanical deformation. It is
maximal near the point at which the network loses its imprinted structure. One
possible practical application of this effect would be a mechanical device for
sorting mixed chiral molecules.Comment: 4 pages, 5 figure
Chirality transfer and stereo-selectivity of imprinted cholesteric networks
Imprinting of cholesteric textures in a polymer network is a method of
preserving a macroscopically chiral phase in a system with no molecular
chirality. By modifying the elastics properties of the network, the resulting
stored helical twist can be manipulated within a wide range since the
imprinting efficiency depends on the balance between the elastics constants and
twisting power at network formation. One spectacular property of phase
chirality imprinting is the created ability of the network to adsorb
preferentially one stereo-component from a racemic mixture. In this paper we
explore this property of chirality transfer from a macroscopic to the molecular
scale. In particular, we focus on the competition between the phase chirality
and the local nematic order. We demonstrate that it is possible to control the
subsequent release of chiral solvent component from the imprinting network and
the reversibility of the stereo-selective swelling by racemic solvents
Recommended from our members
Myosin-I nomenclature.
We suggest that the vertebrate myosin-I field adopt a common nomenclature system based on the names adopted by the Human Genome Organization (HUGO). At present, the myosin-I nomenclature is very confusing; not only are several systems in use, but several different genes have been given the same name. Despite their faults, we believe that the names adopted by the HUGO nomenclature group for genome annotation are the best compromise, and we recommend universal adoption
Stereo-selective swelling of imprinted cholesteric networks
Molecular chirality, and the chiral symmetry breaking of resulting
macroscopic phases, can be topologically imprinted and manipulated by
crosslinking and swelling of polymer networks. We present a new experimental
approach to stereo-specific separation of chiral isomers by using a cholesteric
elastomer in which a helical director distribution has been topological
imprinted by crosslinking. This makes the material unusual in that is has a
strong phase chirality, but no molecular chirality at all; we study the nature
and parameters controlling the twist-untwist transition. Adding a racemic
mixture to the imprinted network results in selective swelling by only the
component of ``correct'' handedness. We investigate the capacity of demixing in
a racemic environment, which depends on network parameters and the underlying
nematic order
Measuring organisational readiness for patient engagement (MORE) : an international online Delphi consensus study
Date of Acceptance: 28/01/2015. © 2015 Oostendorp et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise statedWidespread implementation of patient engagement by organisations and clinical teams is not a reality yet. The aim of this study is to develop a measure of organisational readiness for patient engagement designed to monitor and facilitate a healthcare organisation’s willingness and ability to effectively implement patient engagement in healthcarePeer reviewedFinal Published versio
- …
