48 research outputs found

    La genómica, la selección natural y la evolución

    Get PDF
    La genómica comparativa es la última revolución en biología evolutiva y ofrece, a la vez, desafíos y promesas. Un desafío es encontrar información en los colosales bancos de datos de los que se dispone. La promesa es establecer el puente entre genotipo y fenotipo. Semejante tarea nos permitirá identificar los cambios genómicos vinculados con la adaptación y en nuestra especie saber qué cambios genéticos subyacen a la postura erecta, el tamaño relativo del cerebro, el origen del lenguaje, la habilidad para fabricar herramientas, que son algunos de los aspectos que nos diferencian de los grandes monos y de los homínidos tempranos. Los genomas son un registro completo, un inventario de todos los genes necesarios para construir y operar un organismo y, también, una ventana hacia el pasado, tanto reciente como profundo. Los estudios basados en el ADN han confirmado la tesis darwiniana de la descendencia con modificación a partir de ancestros comunes. Sin embargo, aún hoy la aceptación del argumento evolucionista es limitada y las causas siguen siendo las mismas que en el siglo XIX. Se trata de cuestionamientos a los tres componentes del argumento darwiniano: la variación, la selección y el tiempo. En cuanto a la variación sabemos que la mayoría de las mutaciones que ocurren al azar en los genomas no afectan el fenotipo (por ejemplo, las que ocurren en regiones del genoma que no tienen función) y que la mayoría de las mutaciones que afectan el fenotipo son perjudiciales y solo unas pocas ventajosas. Esta distribución de los efectos de las mutaciones hace difícil pensar en la evolución adaptativa. Sin embargo, la combinación entre mutación al azar y selección natural (SN) sigue siendo la mejor explicación evolutiva. De hecho, los biólogos apreciaron la interacción entre azar, selección y tiempo 50 años después de “El origen de las especies”, cuando los genetistas de poblaciones desarrollaron modelos matemáticos que describían a la SN como mecanismo principal de la evolución. Las mutaciones que no afectan el fenotipo evolucionan al azar (por deriva genética), las perjudiciales son purgadas por la selección natural negativa y las beneficiosas evolucionan por selección positiva. A lo largo del texto se presentan casos que ilustran el papel de los diferentes modos en que la selección ha purgado la variación desde eones, otros en los que la SN ha conducido a la evolución de novedades evolutivas, casos en los que cambios de hábitos han implicado una relajación de la SN que ha llevado a la muerte de algunos genes y, finalmente, un caso que ilustra en nuestra especie cómo la SN puede conllevar al mantenimiento de variantes perjudiciales.Comparative genomics is the last revolution in evolutionary biology and offers challenges and promises. The first challenge is to search for information in the huge DNA data banks. The promise is to establish the link between the genotype and the phenotype. This task will allow to identify the genomic changes involved in adaptation and to unveil the type of changes underlying key traits that differentiate our species from early hominids. Genomes are a complete record, an inventory of all genes that are necessary to make and operate an organism and, also, a window to both the recent and the deep past. DNA based studies confirmed the Darwinian thesis of common descent. However, even today the Darwinian argument is not universally accepted and the causes are the same as in the nineteenth century. In general non acceptance interrogate the three components of the Darwinian argument: variation and chance, natural selection and time. Concerning variation, we know that mutation is a random process, that most changes in the genome have no phenotypic consequences and that among mutations that affect phenotype most have a detrimental effect and a small proportion are advantageous. Such distribution of the effect of mutations on the phenotype makes adaptive evolution rather contra intuitive. However, the combination of random mutation and natural selection is still the best explanation for biological evolution. In fact, biologist understood the interaction between chance, natural selection and time 50 years after the publication of “The origin of species”, with the advent of population genetics. Mutations that do not have phenotypic consequences evolve at random (by means of genetic drift), detrimental mutations are purged by negative selection and advantageous mutations evolve by means of positive selection. Along the text I present study cases that illustrate how natural selection has purged deleterious variation since the common ancestor of all domains of life and others showing how evolutionary novelties have evolved.Fil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Oviposition site preferences in natural populations of Drosophila melanogaster

    Get PDF
    Habitat selection is postulated to contribute to the maintenance of genetic variation within and among populations. This occurs if genetically different individuals differ in their ability to use different resources in a heterogeneous environment (Jaenike, 1986; Barker and Starmer, 1999: Fanara et al., 1999, Fanara and Hasson, 2001; Gorur et al., 2007; Soto et al., 2008). In addition, it has been proposed that ecological divergence and the establishment of habitat preferences may trigger speciation (R? Kha et al., 1991) In insects, oviposition site preference is one of the components of habitat selection (Fox, 1993 and references therein). In consequence, evolutionary changes in oviposition site preferences may result in selection for increased performance in a new host and may lead, as a by-product to host race formation and speciation (Takamura, 1980; Jaenike and Grimaldi, 1983; Sezer and Butlin, 1998; Craig et al., 2001). Oviposition site preference is a measure of the tendency of females to lay eggs on a particular host or substrate when they are given the choice. In fruit flies of the genus Drosophila this decision determines the chances of survival of the offspring since chances of larvae of changing or finding a suitable host are minimal (Jaenike, 1986; Sezer and Butlin, 1998; Sheeba et al., 1998). Drosophila flies are saprophytophagous insects that use decaying plant materials, including fruits, vegetables and flowers as breeding and feeding sites (Jaenike and Grimaldi, 1983; R´Kha et al., 1991; Reaume and Sokolowski, 2006). D. melanogaster is an excellent model to investigate oviposition site preference, because there is a deep knowledge of its genetics but very little is known about its natural breeding sites. The aim of the present work is to investigate oviposition behaviour in D. melanogaster by studying inter and intrapopulation variation of oviposition site preference.Fil: Betti, María Isabel Luján. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Soto, Eduardo Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Revised phylogenetic relationships within the Drosophila buzzatii species cluster (Diptera: Drosophilidae: Drosophila repleta group) using genomic data

    Get PDF
    The Drosophila buzzatii cluster is a South American clade that encompasses seven closely related cactophilic species and constitutes a valuable model system for evolutionary research. Though the monophyly of the cluster is strongly supported by molecular, cytological and morphological evidence, phylogenetic relationships within it are still controversial. The phylogeny of the D. buzzatii cluster has been addressed using limited sets of molecular markers, namely a few nuclear and mitochondrial genes, and the sharing of fxed chromosomal inversions. However, analyses based on these data revealed inconsistencies across markers and resulted in poorly resolved basal branches. Here, we revise the phylogeny of the D. buzzatii cluster based on a large transcriptomic dataset of 813 kb obtained from four members of this cluster: D. antonietae, D. borborema, D. buzzatii and D. koepferae, using the close relative D. mojavensis (also a member of the repleta group) as outgroup. Our phylogenomic analyses confrm that D. buzzatii is sister to the other six members of the cluster and, though incomplete lineage sorting likely obstructs phylogenetic resolution among these six species, allowed us to recover a novel topology. Divergence time estimates date the radiation of the cluster to the recent upper Pleistocene with most speciation events compressed to the last 500,000 years.Fil: Hurtado, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Cunha Almeida, Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Revale, Santiago. University of Oxford; Reino UnidoFil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentin

    Revised phylogenetic relationships within the Drosophila buzzatii species cluster (Diptera: Drosophilidae: Drosophila repleta group) using genomic data

    Get PDF
    The Drosophila buzzatii cluster is a South American clade that encompasses seven closely related cactophilic species and constitutes a valuable model system for evolutionary research. Though the monophyly of the cluster is strongly supported by molecular, cytological and morphological evidence, phylogenetic relationships within it are still controversial. The phylogeny of the D. buzzatii cluster has been addressed using limited sets of molecular markers, namely a few nuclear and mitochondrial genes, and the sharing of fxed chromosomal inversions. However, analyses based on these data revealed inconsistencies across markers and resulted in poorly resolved basal branches. Here, we revise the phylogeny of the D. buzzatii cluster based on a large transcriptomic dataset of 813 kb obtained from four members of this cluster: D. antonietae, D. borborema, D. buzzatii and D. koepferae, using the close relative D. mojavensis (also a member of the repleta group) as outgroup. Our phylogenomic analyses confrm that D. buzzatii is sister to the other six members of the cluster and, though incomplete lineage sorting likely obstructs phylogenetic resolution among these six species, allowed us to recover a novel topology. Divergence time estimates date the radiation of the cluster to the recent upper Pleistocene with most speciation events compressed to the last 500,000 years.Fil: Hurtado, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Cunha Almeida, Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Revale, Santiago. University of Oxford; Reino UnidoFil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentin

    Host Plant Adaptation in Cactophilic Species of the Drosophila buzzatii Cluster: Fitness and Transcriptomics

    Get PDF
    Host plant shifts in herbivorous insects often involve facing new environments that may speed up the evolution of oviposition behavior, performance-related traits, morphology, and, incidentally, reproductive isolation. In the genus Drosophila, cactophilic species of the repleta group include emblematic species in the study of the evolution of host plant utilization. The South American D. buzzatii and its sibling D. koepferae are a model system for the study of differential host plant use. Although these species exhibit a certain degree of niche overlap, the former breeds primarily on decaying cladodes of Opuntia cacti while D. koepferae main hosts are columnar cacti of the genus Trichocereus. Opuntia sulphurea and Trichocereus terscheckii are among the main hosts in nature. These cacti differ in ecological (spatial and temporal predictability) and chemical characteristics. Particularly relevant is the presence of toxic alkaloids in T. terscheckii. Studies of the effects of these cacti and alkaloids revealed the remarkable impact on oviposition behavior, viability, developmental time, wing morphology, mating success, and developmental stability in both species. Recent whole-genome expression studies showed that expression profiles are massively affected by the rearing cactus, and that the presence of alkaloids is the main factor modulating gene expression in D. buzzatii. Functional enrichment analysis indicated that differentially expressed genes are related to detoxification processes and stress response - though genes involved in development are an important part of the transcriptomic response. The implications of our studies in the evolution of host plant use in the repleta group are discussed.Fil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: de Panis, Diego Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Hurtado, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Mensch, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Positive selection in Nucleoporins challenges constraints on early expressed genes in Drosophila development

    Get PDF
    Developmental conservation among related species is a common generalization known as von Baer’s third law and implies that early stages of development are the most refractory to change. The “hourglass model” is an alternative view that proposes that middle stages are the most constrained during development. To investigate this issue, we undertook a genomic approach and provide insights into how natural selection operates on genes expressed during the first 24 h of Drosophila ontogeny in the six species of the melanogaster group for which whole genome sequences are available. Having studied the rate of evolution of more than 2,000 developmental genes,ourresults showed differential selective pressures atdifferentmoments ofembryogenesis. In manyDrosophila species, early zygotic genes evolved slower than maternal genes indicating that mid-embryogenesis is the stage most refractory to evolutionary change. Interestingly, positively selected genes were found in all embryonic stages even during the period with the highest developmental constraint, emphasizing that positive selection and negative selection are not mutually exclusive as it is often mistakenly considered. Among the fastest evolving genes, we identified a network of nucleoporins (Nups) as part of the maternal transcriptome. Specifically, the acceleration of Nups was driven by positive selection only in the more recently diverged species. BecausemanyNupsareinvolvedinhybridincompatibilitiesbetweenspeciesoftheDrosophilamelanogastersubgroup,ourresultslink rapid evolution of early developmental genes with reproductive isolation. In summary, our study revealed that even within functional groups of genes evolving under strong negative selection many positively selected genes could be recognized. Understanding these exceptions to the broad evolutionary conservation of early expressed developmental genes can shed light into relevant processes driving the evolution of species divergence.Fil: Mensch, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Serra, François. Centro de Investigaciones Principe Felipe; España. Centro Nacional de Análisis Genómico; EspañaFil: Lavagnino, Nicolas Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Dopazo, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Evolution of the odorant-binding protein gene family in Drosophila

    Get PDF
    Odorant-binding proteins (OBPs) are encoded by a gene family involved in the perception of olfactory signals in insects. This chemosensory gene family has been advocated as a candidate to mediate host preference and host shifts in insects, although it also participates in other physiological processes. Remarkable differences in the OBP gene repertoire have been described across insect groups, suggesting an accelerated gene turnover rate. The genus Drosophila, is a valuable resource for ecological genomics studies since it comprises groups of ecologically diverse species and there are genome data for many of them. Here, we investigate the molecular evolution of this chemosensory gene family across 19 Drosophila genomes, including the melanogaster and repleta species groups, which are mostly associated with rotting fruit and cacti, respectively. We also compared the OBP repertoire among the closely related species of the repleta group, associated with different subfamilies of Cactaceae that represent disparate chemical challenges for the flies. We found that the gene family size varies widely between species, ranging from 39 to 54 candidate OBPs. Indeed, more than 54% of these genes are organized in clusters and located on chromosomes X, 2, and 5, with a distribution conserved throughout the genus. The family sizes in the repleta group and D. virilis (virilis-repleta radiation) were smaller than in the melanogaster group. We tested alternative evolutionary models for OBP family size and turnover rates based on different ecological scenarios. We found heterogeneous gene turnover rates (GR) in comparisons involving columnar cactus specialists, prickly pear specialists, and fruit dwellers lineages, and signals of rapid molecular evolution compatible with positive selection in specific OBP genes. Taking ours and previous results together, we propose that this chemosensory gene family is involved in host adaptation and hypothesize that the adoption of the cactophilic lifestyle in the repleta group accelerated the evolution of members of the family.Fil: Rondón Guerrero, Johnma José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Moreyra, Nicolás Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Pisarenco, Vadim A.. Universidad de Barcelona; EspañaFil: Rozas, Julio. Universidad de Barcelona; EspañaFil: Hurtado, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentin

    Ortholog genes from cactophilic Drosophila provide insight into human adaptation to hallucinogenic cacti

    Get PDF
    Cultural transformations of lifestyles and dietary practices have been key drivers of human evolution. However, while most of the evidence of genomic adaptations is related to the hunter-gatherer transition to agricultural societies, little is known on the influence of other major cultural manifestations. Shamanism is considered the oldest religion that predominated throughout most of human prehistory and still prevails in many indigenous populations. Several lines of evidence from ethno-archeological studies have demonstrated the continuity and importance of psychoactive plants in South American cultures. However, despite the well-known importance of secondary metabolites in human health, little is known about its role in the evolution of ethnic differences. Herein, we identified candidate genes of adaptation to hallucinogenic cactus in Native Andean populations with a long history of shamanic practices. We used genome-wide expression data from the cactophilic fly Drosophila buzzatii exposed to a hallucinogenic columnar cactus, also consumed by humans, to identify ortholog genes exhibiting adaptive footprints of alkaloid tolerance. Genomic analyses in human populations revealed a suite of ortholog genes evolving under recent positive selection in indigenous populations of the Central Andes. Our results provide evidence of selection in genetic variants related to alkaloids toxicity, xenobiotic metabolism, and neuronal plasticity in Aymara and Quechua populations, suggesting a possible process of gene-culture coevolution driven by religious practices.Fil: Padro, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: de Panis, Diego Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Luisi, Pierre. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Filosofía y Humanidades; Argentina. Instituto Pasteur; FranciaFil: Dopazo, Hernán Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Szajnman, Sergio Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Soto, Ignacio Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Primer registro de la mosca de alas manchadas Drosophila suzukii (Diptera: Drosophilidae) en la reserva natural provincial Isla Martin García, Argentina

    Get PDF
    Here we report on the first peculiar detection of the spotted-winged drosophila, Drosophila suzukii (Matsumura) on Martín García Island, a wildlife refuge located in the Río de la Plata estuary, Argentina. Flies were collected using banana baited traps fermented with live yeast, in sandy areas with abundant presence of cactus in the interior of the island. The absence of cultivated host plants, e.g., fruit crops, and the small population of humans inhabiting the island make the presence of D. suzukii in this wildlife refuge unexpected. Previous detection of this fly in South America happened mostly within commercial fruit orchards and/or neighboring fields.Se reporta la presencia de la drosophila de alas manchadas, Drosophila suzukii (Matsumura), por primera vez, en la Isla Martin García, una reserva natural ubicada en el estuario del Río de la Plata, Argentina. La captura de individuos de D. suzukii se realizó mediante trampas con banana fermentada con levadura, en arenales con abundante presencia de cactus en el interior de la isla. La ausencia de cultivos de plantas hospedadoras típicas (ej. frutales) y la pequeña población de humanos que habita la isla hacen que la presencia de D. suzukii en este refugio de vida silvestre sea inesperada. La detección previa de esta mosca en América del Sur ocurrió en huertos comerciales de frutas y/o campos vecinos.Fil: Bennardo, Lautaro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Kreiman, Lucas Eli. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Gandini, Luciano Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Rondón Guerrero, Johnma José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Turdera, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Hurtado, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentin

    Species complex diversification by host plant use in an herbivorous insect: The source of Puerto Rican cactus mealybug pest and implications for biological control

    Get PDF
    Cryptic taxa have often been observed in the form of host-associated species that diverged as the result of adaptation to alternate host plants. Untangling cryptic diversity in species complexes that encompass invasive species is a mandatory task for pest management. Moreover, investigating the evolutionary history of a species complex may help to understand the drivers of their diversification. The mealybug Hypogeococcus pungens was believed to be a polyphagous species from South America and has been reported as a pest devastating native cacti in Puerto Rico, also threatening cactus diversity in the Caribbean and North America. There is neither certainty about the identity of the pest nor the source population from South America. Recent studies pointed to substantial genetic differentiation among local populations, suggesting that H. pungens is a species complex. In this study, we used a combination of genome-wide SNPs and mtDNA variation to investigate species diversity within H. pungens sensu lato to establish host plant ranges of each one of the putative members of the complex, to evaluate whether the pattern of host plant association drove diversification in the species complex, and to determine the source population of the Puerto Rican cactus pest. Our results suggested that H. pungens comprises at least five different species, each one strongly associated with specific host plants. We also established that the Puerto Rican cactus pest derives from southeastern Brazilian mealybugs. This is an important achievement because it will help to design reliable strategies for biological control using natural enemies of the pest from its native range.Fil: Poveda Martínez, Daniel Alexander. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Fundación para el Estudio de Especies Invasivas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Universidad del Quindio; ColombiaFil: Aguirre, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para el Estudio de Especies Invasivas; ArgentinaFil: Logarzo, Guillermo Alejandro. Fundación para el Estudio de Especies Invasivas; ArgentinaFil: Hight, Stephen D.. United States Department of Agriculture; Estados UnidosFil: Triapitsyn, Serguei V.. University of California; Estados UnidosFil: Diaz Sotero, Hilda. United States Department of Agriculture; Estados UnidosFil: Diniz Vitorino, Marcelo. Universidade Regional de Blumenau; BrasilFil: Hasson, Esteban Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentin
    corecore