1,008 research outputs found

    Brauer groups and quotient stacks

    Full text link
    A natural question is to determine which algebraic stacks are qoutient stacks. In this paper we give some partial answers and relate it to the old question of whether, for a scheme X, the natural map from the Brauer goup (equivalence classes of Azumaya algebras) to the cohomological Brauer group (the torsion subgroup of H2(X,Gm)H^2(X,{\mathbb G}_m) is surjective.Comment: American J. Math, to appear. (Latex2e, 17pp

    Geometric invariant theory of syzygies, with applications to moduli spaces

    Full text link
    We define syzygy points of projective schemes, and introduce a program of studying their GIT stability. Then we describe two cases where we have managed to make some progress in this program, that of polarized K3 surfaces of odd genus, and of genus six canonical curves. Applications of our results include effectivity statements for divisor classes on the moduli space of odd genus K3 surfaces, and a new construction in the Hassett-Keel program for the moduli space of genus six curves.Comment: v1: 23 pages, submitted to the Proceedings of the Abel Symposium 2017, v2: final version, corrects a sign error and resulting divisor class calculations on the moduli space of K3 surfaces in Section 5, other minor changes, In: Christophersen J., Ranestad K. (eds) Geometry of Moduli. Abelsymposium 2017. Abel Symposia, vol 14. Springer, Cha

    Derived categories of cubic fourfolds

    Full text link
    We discuss the structure of the derived category of coherent sheaves on cubic fourfolds of three types: Pfaffian cubics, cubics containing a plane and singular cubics, and discuss its relation to the rationality of these cubics.Comment: 18 page

    Gravitational dynamics for all tensorial spacetimes carrying predictive, interpretable and quantizable matter

    Full text link
    Only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry matter field equations that are predictive, interpretable and quantizable. These three conditions on matter translate into three corresponding algebraic conditions on the underlying tensorial geometry, namely to be hyperbolic, time-orientable and energy-distinguishing. Lorentzian metrics, on which general relativity and the standard model of particle physics are built, present just the simplest tensorial spacetime geometry satisfying these conditions. The problem of finding gravitational dynamics---for the general tensorial spacetime geometries satisfying the above minimum requirements---is reformulated in this paper as a system of linear partial differential equations, in the sense that their solutions yield the actions governing the corresponding spacetime geometry. Thus the search for modified gravitational dynamics is reduced to a clear mathematical task.Comment: 47 pages, no figures, minor update

    Quantum-limited estimation of the axial separation of two incoherent point sources

    Get PDF
    Improving axial resolution is crucial for three-dimensional optical imaging systems. Here we present a scheme of axial superresolution for two incoherent point sources based on spatial mode demultiplexing. A radial mode sorter is used to losslessly decompose the optical fields into a radial mode basis set to extract the phase information associated with the axial positions of the point sources. We show theoretically and experimentally that, in the limit of a zero axial separation, our scheme allows for reaching the quantum Cram\'er-Rao lower bound and thus can be considered as one of the optimal measurement methods. Unlike other superresolution schemes, this scheme does not require neither activation of fluorophores nor sophisticated stabilization control. Moreover, it is applicable to the localization of a single point source in the axial direction. Our demonstration can be useful to a variety of applications such as far-field fluorescence microscopy.Comment: Comments are welcom

    A characterization of compact complex tori via automorphism groups

    Full text link
    We show that a compact Kaehler manifold X is a complex torus if both the continuous part and discrete part of some automorphism group G of X are infinite groups, unless X is bimeromorphic to a non-trivial G-equivariant fibration. Some applications to dynamics are given.Comment: title changed, to appear in Math. An

    Fibrations on four-folds with trivial canonical bundles

    Full text link
    Four-folds with trivial canonical bundles are divided into six classes according to their holonomy group. We consider examples that are fibred by abelian surfaces over the projective plane. We construct such fibrations in five of the six classes, and prove that there is no such fibration in the sixth class. We classify all such fibrations whose generic fibre is the Jacobian of a genus two curve.Comment: 28 page

    An extremal effective survey about extremal effective cycles in moduli spaces of curves

    Full text link
    We survey recent developments and open problems about extremal effective divisors and higher codimension cycles in moduli spaces of curves.Comment: Submitted to the Proceedings of the Abel Symposium 2017. Comments are welcom
    corecore