22 research outputs found
ComEA Is Essential for the Transfer of External DNA into the Periplasm in Naturally Transformable Vibrio cholerae Cells
The DNA uptake of naturally competent bacteria has been attributed to the action of DNA uptake machineries resembling type IV pilus complexes. However, the protein(s) for pulling the DNA across the outer membrane of Gram-negative bacteria remain speculative. Here we show that the competence protein ComEA binds incoming DNA in the periplasm of naturally competent Vibrio cholerae cells thereby promoting DNA uptake, possibly through ratcheting and entropic forces associated with ComEA binding. Using comparative modeling and molecular simulations, we projected the 3D structure and DNAbinding site of ComEA. These in silico predictions, combined with in vivo and in vitro validations of wild-type and sitedirected modified variants of ComEA, suggested that ComEA is not solely a DNA receptor protein but plays a direct role in the DNA uptake process. Furthermore, we uncovered that ComEA homologs of other bacteria (both Gram-positive and Gram-negative) efficiently compensated for the absence of ComEA in V. cholerae, suggesting that the contribution of ComEA in the DNA uptake process might be conserved among naturally competent bacteria
PROPER: global protein interaction network alignment through percolation matching
Background The alignment of protein-protein interaction (PPI) networks enables us to uncover the relationships between different species, which leads to a deeper understanding of biological systems. Network alignment can be used to transfer biological knowledge between species. Although different PI-network alignment algorithms were introduced during the last decade, developing an accurate and scalable algorithm that can find alignments with high biological and structural similarities among PPI networks is still challenging. Results In this paper, we introduce a new global network alignment algorithm for PPI networks called PROPER. Compared to other global network alignment methods, our algorithm shows higher accuracy and speed over real PPI datasets and synthetic networks. We show that the PROPER algorithm can detect large portions of conserved biological pathways between species. Also, using a simple parsimonious evolutionary model, we explain why PROPER performs well based on several different comparison criteria. Conclusions We highlight that PROPER has high potential in further applications such as detecting biological pathways, finding protein complexes and PPI prediction. The PROPER algorithm is available at http://proper.epfl.ch
ProtDataTherm: A database for thermostability analysis and engineering of proteins.
Protein thermostability engineering is a powerful tool to improve resistance of proteins against high temperatures and thereafter broaden their applications. For efficient protein thermostability engineering, different thermostability-classified data sources including sequences and 3D structures are needed for different protein families. However, no data source is available providing such data easily. It is the first release of ProtDataTherm database for analysis and engineering of protein thermostability which contains more than 14 million protein sequences categorized based on their thermal stability and protein family. This database contains data needed for better understanding protein thermostability and stability engineering. Providing categorized protein sequences and structures as psychrophilic, mesophilic and thermophilic makes this database useful for the development of new tools in protein stability prediction. This database is available at http://profiles.bs.ipm.ir/softwares/protdatatherm. As a proof of concept, the thermostability that improves mutations were suggested for one sample protein belonging to one of protein families with more than 20 mesophilic and thermophilic sequences and with known experimentally measured ΔT of mutations available within ProTherm database
The distribution of protein sequences and structures over the three classes of thermostability.
<p>The distribution of protein sequences and structures over the three classes of thermostability.</p
Ave_The: Average of the number of patterns for thermophilic sequences, Ave_Mes: Average of the number of patterns for mesophilic sequences.
<p>Ave_The: Average of the number of patterns for thermophilic sequences, Ave_Mes: Average of the number of patterns for mesophilic sequences.</p
Additional file 2 of PROPER: global protein interaction network alignment through percolation matching
The PROPER algorithm: detailed comparisons. The detailed experimental results for PROPER are provided in this appendix. (PDF 183 kb
Understanding and Engineering Thermostability in DNA Ligase from Thermococcus sp 1519
The physical chemical principles underlying,enzymatic thermostability are keys to understand the way evolution has shaped proteins,to adapt to a broad range of temperatures. Understanding the molecular determinants at the basis of protein thermostability is also important factor for engineering more thermoresistant enzymes to he used in the industrial-setting, such as, for instance, DNA, ligases, Which are important for DNA replication and repair and have been long used in molecular biology and biotechnology. Here, We fitst address the origin of thermostability in the thermophilic DNA ligase from archaeon Thermococcus sp. 1519 and identify thermosensitive regions using molecular modeling and simulations. In addition, we predict mutations that can enhance. thermostability of the enzyme through bioinformatics, analyses. We show that thermosensitive regions of this enzyme are stabilized at higher temperatures by optimization of charged groups on the surface, and we predict that thermostability can be further increased by further optimization of the network among these charged groups. Engineering this DNA ligase by introducing selected mutations (i.e., A287K, G304D, S364I, and A387K) eventually produced a significant and additive increase in the half-life of the enzyme when compared to that of the wild type
Reduced Granule Cell Proliferation and Molecular Dysregulation in the Cerebellum of Lysosomal Acid Phosphatase 2 (ACP2) Mutant Mice
Lysosomal acid phosphatase 2 (Acp2) mutant mice (naked-ataxia, nax) have a severe cerebellar cortex defect with a striking reduction in the number of granule cells. Using a combination of in vivo and in vitro immunohistochemistry, Western blotting, BrdU assays, and RT-qPCR, we show downregulation of MYCN and dysregulation of the SHH signaling pathway in the nax cerebellum. MYCN protein expression is significantly reduced at P10, but not at the peak of proliferation at around P6 when the number of granule cells is strikingly reduced in the nax cerebellum. Despite the significant role of the SHH–MycN pathway in granule cell proliferation, our study suggests that a broader molecular pathway and additional mechanisms regulating granule cell development during the clonal expansion period are impaired in the nax cerebellum. In particular, our results indicate that downregulation of the protein synthesis machinery may contribute to the reduced number of granule cells in the nax cerebellum