26 research outputs found

    Nematic order in a simple-cubic lattice-spin model with full-ranged dipolar interactions

    Full text link
    In a previous paper [Phys. Rev. E 90, 022506 (2014)], we had studied thermodynamic and structural properties of a three-dimensional simple-cubic lattice model with dipolar-like interaction, truncated at nearest-neighbor separation, for which the existence of an ordering transition at finite temperature had been proven mathematically; here we extend our investigation addressing the full-ranged counterpart of the model, for which the critical behavior had been investigated theoretically and experimentally. In addition the existence of an ordering transition at finite temperature had been proven mathematically as well. Both models exhibited the same continuously degenerate ground-state configuration, possessing full orientational order with respect to a suitably defined staggered magnetization (polarization), but no nematic second-rank order; in both cases, thermal fluctuations remove the degeneracy, so that nematic order does set in at low but finite temperature via a mechanism of order by disorder. On the other hand, there were recognizable quantitative differences between the two models as for ground-state energy and critical exponent estimates; the latter were found to agree with early Renormalization Group calculations and with experimental results.Comment: 9 pages, 10 figures, accepted for publication in the Physical Review E. arXiv admin note: substantial text overlap with arXiv:1408.473

    Exact results for some Madelung type constants in the finite-size scaling theory

    Full text link
    A general formula is obtained from which the madelung type constant: C(d∣ν)=∫0∞dxxd/2−ν−1[(∑l=−∞∞e−xl2)d−1−(πx)d/2] C(d|\nu)=\int_0^\infty dx x^{d/2-\nu-1}[(\sum_{l=-\infty}^\infty e^{-xl^2})^d-1-(\frac\pi x)^{d/2}] extensively used in the finite-size scaling theory is computed analytically for some particular cases of the parameters dd and ν\nu. By adjusting these parameters one can obtain different physical situations corresponding to different geometries and magnitudes of the interparticle interaction.Comment: IOP- macros, 5 pages, replaced with amended version (1 ref. added

    Possible zero sound in layered perovskites with ferromagnetic ss-dd exchange interaction

    Full text link
    We analyze the conditions for observation of zero sound in layered perovskites with transition metal ion on chalcogenide oxidizer. We conclude that propagation of zero sound is possible only for anti-ferromagnetic sign of the ss-dd interaction. If the ss-dd exchange integral JsdJ_{sd} has antiferromagnetic sign, as it is perhaps in the case for layered cuprates, zero sound is a thermally activated dissipation mode,which generates only "hot spots" in the Angle Resolved Photoemission Spectroscopy (ARPES) data along the Fermi contour. We predict that zero sound will be observable for transition metal perovskites with 4ss and 3dd levels close to the pp-level of the chalcogenide. The simultaneous lack of superconductivity, the appearance of hot spots in ARPES data, and the proximity of the three named levels, represents the significant hint for the choice of material to be investigated.Comment: 7 pages, 4 figures, 30 reference

    Hot spots along the Fermi contour of high-TcT_c cuprates analyzed by ss-dd exchange interaction

    Full text link
    We perform a thorough theoretical study of the electron properties of a generic CuO2_2 plane in the framework of Shubin-Kondo-Zener ss-dd exchange interaction that simultaneously describes the correlation between TcT_c and the Cu4ss energy. To this end, we apply the Pokrovsky theory [J. Exp. Theor. Phys. 13, 447-450 (1961)] for anisotropic gap BCS superconductors. It takes into account the thermodynamic fluctuations of the electric field in the dielectric direction perpendicular to the conducting layers. We microscopically derive a multiplicatively separable kernel able to describe the scattering rate in the momentum space, as well as the superconducting gap anisotropy within the BCS theory. These findings may be traced back to the fact that both the Fermi liquid and the BCS reductions lead to one and the same reduced Hamiltonian involving a separable interaction, such that a strong electron scattering corresponds to a strong superconducting gap and vice versa. Moreover, the superconducting gap and the scattering rate vanish simultaneously along the diagonals of the Brillouin zone. We would like to stress that our theoretical study reproduces the phenomenological analysis of other authors aiming at describing Angle Resolved Photoemission Spectroscopy measurements. Within standard approximations one and the same ss-dd exchange Hamiltonian describes gap anisotropy of the superconducting phase and the anisotropy of scattering rate of charge carriers in the normal phase.Comment: 10 pages, 3 figures, 56 reference

    Theory of a spherical quantum rotors model: low--temperature regime and finite-size scaling

    Full text link
    The quantum rotors model can be regarded as an effective model for the low-temperature behavior of the quantum Heisenberg antiferromagnets. Here, we consider a dd-dimensional model in the spherical approximation confined to a general geometry of the form Ld−d′×∞d′×LτzL^{d-d'}\times\infty^{d'}\times L_{\tau}^{z} ( LL-linear space size and LτL_{\tau}-temporal size) and subjected to periodic boundary conditions. Due to the remarkable opportunity it offers for rigorous study of finite-size effects at arbitrary dimensionality this model may play the same role in quantum critical phenomena as the popular Berlin-Kac spherical model in classical critical phenomena. Close to the zero-temperature quantum critical point, the ideas of finite-size scaling are utilized to the fullest extent for studying the critical behavior of the model. For different dimensions 1<d<31<d<3 and 0≤d′≤d0\leq d'\leq d a detailed analysis, in terms of the special functions of classical mathematics, for the susceptibility and the equation of state is given. Particular attention is paid to the two-dimensional case.Comment: 33pages, revtex+epsf, 3ps figures included submitted to PR

    An Exchange Mechanism for the Magnetic Behavior of Er3+ Complexes

    No full text
    We study the magnetic properties of the erbium based compounds, Na9[Er(W5O18)2] and [(Pc)Er{Pc{N(C4H9)2}8}]·/−, in the framework of an effective spin exchange model involving delocalized electrons occupying molecular orbitals. The calculations successfully reproduce the experimental data available in the literature for the magnetic spectrum, magnetization and molar susceptibility in dc and ac fields. Owing to their similar molecular geometry, the compounds’ magnetic behaviors are interpreted in terms of the same set of active orbitals and thus the same effective spin coupling scheme. For all three complexes, the model predicts a prompt change in the ground state from a Kramer’s doublet at zero fields to a fully polarized quartet one brought about by the action of an external magnetic field without Zeeman splitting. This alteration is attributed to the enhancement of the effect of orbital interactions over the spin exchange as the magnitude of the external magnetic field increases

    Classical lattice spin models involving singular interactions isotropic in spin space

    No full text
    We address here a few classical lattice spin models, involving n-component unit vectors (n=2,3), associated with a D-dimensional lattice ZD,D=1,2, and interacting via a pair potential restricted to nearest neighbors and being isotropic in spin space, i.e., defined by a function of the scalar product between the interacting spins. When the potential involves a continuous function of the scalar product, the Mermin-Wagner theorem and its generalizations exclude orientational order at all finite temperatures in the thermodynamic limit, and exclude phase transitions at finite temperatures when D=1; on the other hand, we have considered here some comparatively simple functions of the scalar product which are bounded from below, diverge to +∞ for certain mutual orientations, and are continuous almost everywhere with integrable singularities. Exact solutions are presented for D=1, showing an absence of phase transitions and an absence of orientational order at all finite temperatures in the thermodynamic limit; for D=2, and in the absence of more stringent mathematical results, extensive simulations carried out on some of them point to the absence of orientational order at all finite temperatures and suggest the existence of a Berezinskiĭ-Kosterlitz-Thouless transition
    corecore