21,208 research outputs found

    Wireless Health Monitoring using Passive WiFi Sensing

    Full text link
    This paper presents a two-dimensional phase extraction system using passive WiFi sensing to monitor three basic elderly care activities including breathing rate, essential tremor and falls. Specifically, a WiFi signal is acquired through two channels where the first channel is the reference one, whereas the other signal is acquired by a passive receiver after reflection from the human target. Using signal processing of cross-ambiguity function, various features in the signal are extracted. The entire implementations are performed using software defined radios having directional antennas. We report the accuracy of our system in different conditions and environments and show that breathing rate can be measured with an accuracy of 87% when there are no obstacles. We also show a 98% accuracy in detecting falls and 93% accuracy in classifying tremor. The results indicate that passive WiFi systems show great promise in replacing typical invasive health devices as standard tools for health care.Comment: 6 pages, 8 figures, conference pape

    Competition between charge and spin order in the tUVt-U-V extended Hubbard model on the triangular lattice

    Full text link
    Several new classes of compounds can be modeled in first approximation by electrons on the triangular lattice that interact through on-site repulsion UU as well as nearest-neighbor repulsion VV. This extended Hubbard model on a triangular lattice has been studied mostly in the strong coupling limit for only a few types of instabilities. Using the extended two-particle self consistent approach (ETPSC), that is valid at weak to intermediate coupling, we present an unbiased study of the density and interaction dependent crossover diagram for spin and charge density wave instabilities of the normal state at arbitrary wave vector. When UU dominates over VV and electron filling is large, instabilities are chiefly in the spin sector and are controlled mostly by Fermi surface properties. Increasing VV eventually leads to charge instabilities. In the latter case, it is mostly the wave vector dependence of the vertex that determines the wave vector of the instability rather than Fermi surface properties. At small filling, non-trivial instabilities appear only beyond the weak coupling limit. There again, charge density wave instabilities are favored over a wide range of dopings by large VV at wave vectors corresponding to (3)×(3)\sqrt(3) \times \sqrt(3) superlattice in real space. Commensurate fillings do not play a special role for this instability. Increasing UU leads to competition with ferromagnetism. At negative values of UU or VV, neglecting superconducting fluctuations, one finds that charge instabilities are favored. In general, the crossover diagram presents a rich variety of instabilities. We also show that thermal charge-density wave fluctuations in the renormalized classical regime can open a pseudogap in the single-particle spectral weight, just as spin or superconducting fluctuations

    Cosmological solutions of massive gravity on de Sitter

    Full text link
    In the framework of the recently proposed models of massive gravity, defined with respect to a de Sitter reference metric, we obtain new homogeneous and isotropic solutions for arbitrary cosmological matter and arbitrary spatial curvature. These solutions can be classified into three branches. In the first two, the massive gravity terms behave like a cosmological constant. In the third branch, the massive gravity effects can be described by a time evolving effective fluid with rather remarkable features, including the property to behave as a cosmological constant at late time.Comment: 6 pages, 1 figure; discussion extended, a few references added, improved analysis in Section

    Supersolidity, entropy and frustration

    Full text link
    We study the properties of t-t'-V model of hard-core bosons on the triangular lattice that can be realized in optical lattices. By mapping to the spin-1/2 XXZ model in a field, we determine the phase diagram of the t-V model where the supersolid characterized by the ordering pattern (x,x,-2x') ("ferrimagnetic" or SS A) is a ground state for chemical potential \mu >3V. By turning on either temperature or t' at half-filling \mu =3V, we find a first order transition from SS A to the elusive supersolid characterized by the (x,-x,0) ordering pattern ("antiferromagnetic" or SS C). In addition, we find a large region where a superfluid phase becomes a solid upon raising temperature at fixed chemical potential. This is an analog of the Pomeranchuk effect driven by the large entropic effects associated with geometric frustration on the triangular lattice.Comment: 4 pages, igures, LaTe

    Conformal mapping of unbounded multiply connected regions onto canonical slit regions

    Get PDF
    We present a boundary integral equation method for conformal mapping of unbounded multiply connected regions onto five types of canonical slit regions. For each canonical region, three linear boundary integral equations are constructed from a boundary relationship satisfied by an analytic function on an unboundedmultiply connected region. The integral equations are uniquely solvable. The kernels involved in these integral equations are the modified Neumann kernels and the adjoint generalized Neumann kernels

    Thermal quantum and classical correlations in two qubit XX model in a nonuniform external magnetic field

    Full text link
    We investigate how thermal quantum discord (QD) and classical correlations (CC) of a two-qubit one-dimensional XX Heisenberg chain in thermal equilibrium depend on the temperature of the bath as well as on nonuniform external magnetic fields applied to two qubits and varied separately. We show that the behavior of QD differs in many unexpected ways from the thermal entanglement (EOF). For the nonuniform case (B1 = -B2), we find that QD and CC are equal for all values of (B1 = -B2) and for different temperatures. We show that, in this case, the thermal states of the system belong to a class of mixed states and satisfy certain conditions under which QD and CC are equal. The specification of this class and the corresponding conditions are completely general and apply to any quantum system in a state in this class satisfying these conditions. We further find that the relative contributions of QD and CC can be controlled easily by changing the relative magnitudes of B1 and B2. Finally, we connect our results with the monogamy relations between the EOF, CC and the QD of two qubits and the environment.Comment: 8 pages, 13 figures. We connect our results with the monogamy relations between the EOF, CC and the QD of two qubits and the environmen

    Tight lower bound to the geometric measure of quantum discord

    Full text link
    Dakic, Vedral and Brukner [Physical Review Letters \tf{105},190502 (2010)] gave a geometric measure of quantum discord in a bipartite quantum state as the distance of the state from the closest classical quantum (or zero discord) state and derived an explicit formula for a two qubit state. Further, S.Luo and S.Fu [Physical Review A \tf{82}, 034302 (2010)] obtained a generic form of this geometric measure for a general bipartite state and established a lower bound. In this brief report we obtain a rigorous lower bound to the geometric measure of quantum discord in a general bipartite state which dominates that obtained by S.Luo and S.Fu.Comment: 10 pages,2 figures. In the previous versions, a constraint was ignored while optimizing the second term in Eq.(5), in which case, only a lower bound on the geometric discord can be obtained. The title is also consequently changed. Accepted in Phys.Rev.
    corecore