21 research outputs found

    Mesenchymal Stem Cells for Cardiac Regeneration: Translation to Bedside Reality

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death worldwide. According to the World Health Organization (WHO), an estimate of 17.3 million people died from CVDs in 2008 and by 2030, the number of deaths is estimated to reach almost 23.6 million. Despite the development of a variety of treatment options, heart failure management has failed to inhibit myocardial scar formation and replace the lost cardiomyocyte mass with new functional contractile cells. This shortage is complicated by the limited ability of the heart for self-regeneration. Accordingly, novel management approaches have been introduced into the field of cardiovascular research, leading to the evolution of gene- and cell-based therapies. Stem cell-based therapy (aka, cardiomyoplasty) is a rapidly growing alternative for regenerating the damaged myocardium and attenuating ischemic heart disease. However, the optimal cell type to achieve this goal has not been established yet, even after a decade of cardiovascular stem cell research. Mesenchymal stem cells (MSCs) in particular have been extensively investigated as a potential therapeutic approach for cardiac regeneration, due to their distinctive characteristics. In this paper, we focus on the therapeutic applications of MSCs and their transition from the experimental benchside to the clinical bedside

    Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels

    Get PDF
    Abstract Background The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that primarily resides in airway epithelial cells. Decreased CFTR expression and/or function lead to impaired airway surface liquid (ASL) volume homeostasis, resulting in accumulation of mucus, reduced clearance of bacteria, and chronic infection and inflammation. Methods Expression of CFTR and the cigarette smoke metal content were assessed in lung samples of controls and COPD patients with established GOLD stage 4. CFTR protein and mRNA were quantified by immunohistochemistry and quantitative RT-PCR, respectively. Metals present in lung samples were quantified by ICP-AES. The effect of cigarette smoke on down-regulation of CFTR expression and function was assessed using primary human airway epithelial cells. The role of leading metal(s) found in lung samples of GOLD 4 COPD patients involved in the alteration of CFTR was confirmed by exposing human bronchial epithelial cells 16HBE14o- to metal-depleted cigarette smoke extracts. Results We found that CFTR expression is reduced in the lungs of GOLD 4 COPD patients, especially in bronchial epithelial cells. Assessment of metals present in lung samples revealed that cadmium and manganese were significantly higher in GOLD 4 COPD patients when compared to control smokers (GOLD 0). Primary human airway epithelial cells exposed to cigarette smoke resulted in decreased expression of CFTR protein and reduced airway surface liquid height. 16HBE14o-cells exposed to cigarette smoke also exhibited reduced levels of CFTR protein and mRNA. Removal and/or addition of metals to cigarette smoke extracts before exposure established their role in decrease of CFTR in airway epithelial cells. Conclusions CFTR expression is reduced in the lungs of patients with severe COPD. This effect is associated with the accumulation of cadmium and manganese suggesting a role for these metals in the pathogenesis of COPD

    Postablation Right Atrial Dissection in Ebsteins Anomaly.

    No full text

    MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung.

    Get PDF
    The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that plays a critical role in the lung by maintaining fluid homeostasis. Absence or malfunction of CFTR leads to Cystic Fibrosis, a disease characterized by chronic infection and inflammation. We recently reported that air pollutants such as cigarette smoke and cadmium negatively regulate the expression of CFTR by affecting several steps in the biogenesis of CFTR protein. MicroRNAs (miRNAs) have recently received a great deal of attention as both biomarkers and therapeutics due to their ability to regulate multiple genes. Here, we show that cigarette smoke and cadmium up-regulate the expression of two miRNAs (miR-101 and miR-144) that are predicted to target CFTR in human bronchial epithelial cells. When premature miR-101 and miR-144 were transfected in human airway epithelial cells, they directly targeted the CFTR 3'UTR and suppressed the expression of the CFTR protein. Since miR-101 was highly up-regulated by cigarette smoke in vitro, we investigated whether such increase also occurred in vivo. Mice exposed to cigarette smoke for 4 weeks demonstrated an up-regulation of miR-101 and suppression of CFTR protein in their lungs. Finally, we show that miR-101 is highly expressed in lung samples from patients with severe chronic obstructive pulmonary disease (COPD) when compared to control patients. Taken together, these results suggest that chronic cigarette smoking up-regulates miR-101 and that this miRNA could contribute to suppression of CFTR in the lungs of COPD patients

    Comparison of Human Induced Pluripotent Stem-Cell Derived Cardiomyocytes with Human Mesenchymal Stem Cells following Acute Myocardial Infarction

    No full text
    <div><p>Introduction</p><p>Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have recently been shown to express key cardiac proteins and improve <i>in vivo</i> cardiac function when administered following myocardial infarction. However, the efficacy of hiPSC-derived cell therapies, in direct comparison to current, well-established stem cell-based therapies, is yet to be elucidated. The goal of the current study was to compare the therapeutic efficacy of human mesenchymal stem cells (hMSCs) with hiPSC-CMs in mitigating myocardial infarction (MI).</p><p>Methods</p><p>Male athymic nude hyrats were subjected to permanent ligation of the left-anterior-descending (LAD) coronary artery to induce acute MI. Four experimental groups were studied: 1) control (non-MI), 2) MI, 3) hMSCs (MI+MSC), and 4) hiPSC-CMs (MI+hiPSC-derived cardiomyocytes). The hiPSC-CMs and hMSCs were labeled with superparamagnetic iron oxide (SPIO) <i>in vitro</i> to track the transplanted cells in the ischemic heart by high-field cardiac MRI. These cells were injected into the ischemic heart 30-min after LAD ligation. Four-weeks after MI, cardiac MRI was performed to track the transplanted cells in the infarct heart. Additionally, echocardiography (M-mode) was performed to evaluate the cardiac function. Immunohistological and western blot studies were performed to assess the cell tracking, engraftment and cardiac fibrosis in the infarct heart tissues.</p><p>Results</p><p>Echocardiography data showed a significantly improved cardiac function in the hiPSC-CMs and hMSCs groups, when compared to MI. Immunohistological studies showed expression of connexin-43, α-actinin and myosin heavy chain in engrafted hiPSC-CMs. Cardiac fibrosis was significantly decreased in hiPSC-CMs group when compared to hMSCs or MI groups. Overall, this study demonstrated improved cardiac function with decreased fibrosis with both hiPSC-CMs and hMSCs groups when compared with MI group.</p></div

    In-vitro expression of cardiac markers in hiPSC-CMs.

    No full text
    <p>Immunohistological staining shows expression of (<b>A</b>) α-actinin, (<b>B</b>) Troponin-T and (<b>C</b>) Connexin-43, by human iPSC-derived cardiomyocytes. RFP (red fluorescence protein, red color); DAPI (blue color).</p

    Experimental Design.

    No full text
    <p>Schematic representation of experimental design, indicating relative timing of LAD coronary artery ligation, stem cell administration, and functional analyses.</p
    corecore