4 research outputs found

    Activity of the EGFR-HER2 dual inhibitor afatinib in EGFR-mutant lung cancer patients with acquired resistance to reversible EGFR tyrosine kinase inhibitors

    Get PDF
    Background: The purpose of this study was to evaluate the efficacy of afatinib in EGFR-mutant metastatic NSCLC patients with acquired resistance to erlotinib or gefitinib. Materials and methods: We retrospectively analyzed the outcome of patients with EGFR-mutant advanced NSCLC treated with afatinib after failure of chemotherapy and EGFR TKIs. Results: A total of 96 individuals were included in the study. According to EGFR status, most patients (n = 63; 65.6%) harbored a deletion in exon 19, and de novo T790M mutation was detected in 2 cases (T790M and exon 19). Twenty-four (25%) patients underwent repeated biopsy immediately before starting afatinib and secondary T790M was detected in 8 (33%) samples. Among the 86 patients evaluable for efficacy, response rate was 11.6%, with a median progression free-survival (PFS) and overall survival (OS) of 3.9 and 7.3 months, respectively. No significant difference in PFS and OS was observed according to type of last therapy received before afatinib, type of EGFR mutation or adherence to Jackman criteria, and patients benefiting from afatinib therapy had longer PFS and OS (P < .001). Outcome results for repeated biopsy patients were similar to the whole population, with no evidence of response in T790M-positive patients. All patients were evaluable for toxicity, and 81% experienced an AE of any grade, with grade 3 to 4 AEs, mainly diarrhea and skin toxicity, occurring in 19 (20%) patients. Conclusion: Our results showed that afatinib has only modest efficacy in a real life population of EGFR mutant NSCLC patients with acquired resistance to erlotinib or gefitinib

    Real-world ANASTASE study of atezolizumab+nab-paclitaxel as first-line treatment of PD-L1-positive metastatic triple-negative breast cancer

    No full text
    Abstract The combination of atezolizumab and nab-paclitaxel is recommended in the EU as first-line treatment for PD-L1-positive metastatic triple-negative breast cancer (mTNBC), based on the results of phase III IMpassion130 trial. However, ‘real-world’ data on this combination are limited. The ANASTASE study (NCT05609903) collected data on atezolizumab plus nab-paclitaxel in PD-L1-positive mTNBC patients enrolled in the Italian Compassionate Use Program. A retrospective analysis was conducted in 29 Italian oncology centers among patients who completed at least one cycle of treatment. Data from 52 patients were gathered. Among them, 21.1% presented de novo stage IV; 78.8% previously received (neo)adjuvant treatment; 55.8% patients had only one site of metastasis; median number of treatment cycles was five (IQR: 3–8); objective response rate was 42.3% (95% CI: 28.9–55.7%). The median time-to-treatment discontinuation was 5 months (95% CI: 2.8–7.1); clinical benefit at 12 months was 45.8%. The median duration of response was 12.7 months (95% CI: 4.1–21.4). At a median follow-up of 20 months, the median progression-free survival was 6.3 months (95% CI: 3.9–8.7) and the median time to next treatment or death was 8.1 months (95% CI: 5.5–10.7). At 12 months and 24 months, the overall survival rates were 66.3% and 49.1%, respectively. The most common immune-related adverse events included rash (23.1%), hepatitis (11.5%), thyroiditis (11.5%) and pneumonia (9.6%). Within the ANASTASE study, patients with PD-L1-positive mTNBC treated with first-line atezolizumab plus nab-paclitaxel achieved PFS and ORR similar to those reported in the IMpassion130 study, with no unexpected adverse events

    Activity of the EGFR-HER2 Dual Inhibitor Afatinib in EGFR-Mutant Lung Cancer Patients With Acquired Resistance to Reversible EGFR Tyrosine Kinase Inhibitors

    No full text
    Background: The purpose of this study was to evaluate the efficacy of afatinib in EGFR-mutant metastatic NSCLC patients with acquired resistance to erlotinib or gefitinib. Materials and methods: We retrospectively analyzed the outcome of patients with EGFR-mutant advanced NSCLC treated with afatinib after failure of chemotherapy and EGFR TKIs. Results: A total of 96 individuals were included in the study. According to EGFR status, most patients (n = 63; 65.6%) harbored a deletion in exon 19, and de novo T790M mutation was detected in 2 cases (T790M and exon 19). Twenty-four (25%) patients underwent repeated biopsy immediately before starting afatinib and secondary T790M was detected in 8 (33%) samples. Among the 86 patients evaluable for efficacy, response rate was 11.6%, with a median progression free-survival (PFS) and overall survival (OS) of 3.9 and 7.3 months, respectively. No significant difference in PFS and OS was observed according to type of last therapy received before afatinib, type of EGFR mutation or adherence to Jackman criteria, and patients benefiting from afatinib therapy had longer PFS and OS (P < .001). Outcome results for repeated biopsy patients were similar to the whole population, with no evidence of response in T790M-positive patients. All patients were evaluable for toxicity, and 81% experienced an AE of any grade, with grade 3 to 4 AEs, mainly diarrhea and skin toxicity, occurring in 19 (20%) patients. Conclusion: Our results showed that afatinib has only modest efficacy in a real life population of EGFR mutant NSCLC patients with acquired resistance to erlotinib or gefitinib
    corecore