36 research outputs found

    Eat Me or Die

    Get PDF
    During embryonic development, the sculpting of many tissues depends on waves of apoptotic cell death among different cell populations. Unfortunately, at least in higher animals with sophisticated immune systems, dying cells must be engulfed by phagocytes to prevent a massive autoimmune response. In their Perspective, Savill et al. discuss new work (Li et al., Wang et al.) that identifies a key receptor expressed by macrophages, PSR, that is essential for cell corpse engulfment

    Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps

    Get PDF
    BACKGROUND: Activation of NADPH oxidase is required for neutrophil extracellular trap (NET) formation. Protein kinase C (PKC) is an upstream mediator of NADPH oxidase activation and thus likely to have a role in NET formation. METHODS: Pharmacological inhibitors were used to block PKC activity in neutrophils harvested from healthy donor blood. RESULTS: Pan PKC inhibition with Ro-31-8220 (p<0.001), conventional PKC inhibition with Go 6976 (p<0.001) and specific PKCβ inhibition with LY333531 (p<0.01) blocked NET formation in response to PMA. Inhibition of novel and atypical PKC had no effect. LY333531 blocked NET induction by the diacylglycerol analogue OAG (conventional PKC activator) (p<0.001). CONCLUSIONS: Conventional PKCs have a prominent role in NET formation. Furthermore PKCβ is the major isoform implicated in NET formation

    Inhibition of cyclin-dependent kinase 9 downregulates cytokine production without detrimentally affecting human monocyte-derived macrophage viability

    Get PDF
    Cyclin-dependent kinase (CDK) inhibitor drugs (CDKi), such as R-roscovitine and AT7519, induce neutrophil apoptosis in vitro and enhance the resolution of inflammation in a number of in vivo models. This class of compounds are potential novel therapeutic agents that could promote the resolution of acute and chronic inflammatory conditions where neutrophil activation contributes to tissue damage and aberrant tissue repair. In this study we investigated CDKi effects on macrophage pro-inflammatory mediator production and viability. Treatment of human monocyte-derived macrophages (MDMs) with the CDKi AT7519 and R-roscovitine at concentrations that induce neutrophil apoptosis had no significant effect on control or LPS-activated MDM apoptosis and viability, and did not detrimentally affect MDM efferocytosis of apoptotic cells. In addition, enhanced efferocytosis, induced by the glucocorticoid dexamethasone, was also unaffected after a short time treatment with R-roscovitine. Macrophage cytokine responses to inflammatory stimuli are also of importance during inflammation and resolution. As a key target of CDKi, CDK9, is involved in protein transcription via the RNA polymerase II complex, we investigated the effect of CDKi drugs on cytokine production. Our data show that treatment with AT7519 significantly downregulated expression and release of key MDM cytokines IL-6, TNF, IL-10 and IL-1β, as well as markers of pro-inflammatory macrophage polarisation. R-Roscovitine was also able to downregulate inflammatory cytokine protein secretion from MDMs. Using siRNA transfection, we demonstrate that genetic knock-down of CDK9 replicates these findings, reducing expression and release of pro-inflammatory cytokines. Furthermore, overexpression of CDK9 in THP-1 cells can promote a pro-inflammatory phenotype in these cells, suggesting that CDK9 plays an important role in the inflammatory phenotype of macrophages. Overall, this study demonstrates that pharmacological and genetic targeting of CDK9 inhibits an inflammatory phenotype in human MDMs. As such these data indicate that CDK9 may be key to therapeutically targeting pro-inflammatory macrophage functions during chronic inflammation

    Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury

    Get PDF
    Acute respiratory distress syndrome (ARDS) usually requires symptomatic supportive therapy by intubation and mechanical ventilation with the supplemental use of high oxygen concentrations. Although oxygen therapy represents a life-saving measure, the recent discovery of a critical tissue-protecting mechanism predicts that administration of oxygen to ARDS patients with uncontrolled pulmonary inflammation also may have dangerous side effects. Oxygenation may weaken the local tissue hypoxia-driven and adenosine A2A receptor (A2AR)-mediated anti-inflammatory mechanism and thereby further exacerbate lung injury. Here we report experiments with wild-type and adenosine A2AR-deficient mice that confirm the predicted effects of oxygen. These results also suggest the possibility of iatrogenic exacerbation of acute lung injury upon oxygen administration due to the oxygenation-associated elimination of A2AR-mediated lung tissue-protecting pathway. We show that this potential complication of clinically widely used oxygenation procedures could be completely prevented by intratracheal injection of a selective A2AR agonist to compensate for the oxygenation-related loss of the lung tissue-protecting endogenous adenosine. The identification of a major iatrogenic complication of oxygen therapy in conditions of acute lung inflammation attracts attention to the need for clinical and epidemiological studies of ARDS patients who require oxygen therapy. It is proposed that oxygen therapy in patients with ARDS and other causes of lung inflammation should be combined with anti-inflammatory measures, e.g., with inhalative application of A2AR agonists. The reported observations may also answer the long-standing question as to why the lungs are the most susceptible to inflammatory injury and why lung failure usually precedes multiple organ failure

    Optical detection of distal lung enzyme activity in human inflammatory lung disease.

    Get PDF
    Objective and Impact Statement. There is a need to develop platforms delineating inflammatory biology of the distal human lung. We describe a platform technology approach to detect in situ enzyme activity and observe drug inhibition in the distal human lung using a combination of matrix metalloproteinase (MMP) optical reporters, fibered confocal fluorescence microscopy (FCFM), and a bespoke delivery device. Introduction. The development of new therapeutic agents is hindered by the lack of in vivo in situ experimental methodologies that can rapidly evaluate the biological activity or drug-target engagement in patients. Methods. We optimised a novel highly quenched optical molecular reporter of enzyme activity (FIB One) and developed a translational pathway for in-human assessment. Results. We demonstrate the specificity for matrix metalloproteases (MMPs) 2, 9, and 13 and probe dequenching within physiological levels of MMPs and feasibility of imaging within whole lung models in preclinical settings. Subsequently, in a first-in-human exploratory experimental medicine study of patients with fibroproliferative lung disease, we demonstrate, through FCFM, the MMP activity in the alveolar space measured through FIB One fluorescence increase (with pharmacological inhibition). Conclusion. This translational in situ approach enables a new methodology to demonstrate active drug target effects of the distal lung and consequently may inform therapeutic drug development pathways

    Secondary necrosis of apoptotic neutrophils induced by the human cathelicidin LL-37 is not proinflammatory to phagocytosing macrophages

    Get PDF
    Cathelicidins are CHDP with essential roles in innate host defense but also more recently associated with the pathogenesis of certain chronic diseases. These peptides have microbicidal potential and the capacity to modulate innate immunity and inflammatory processes. PMN are key innate immune effector cells with pivotal roles in defense against infection. The appropriate regulation of PMN function, death, and clearance is critical to innate immunity, and dysregulation is implicated in disease pathogenesis. The efferocytosis of apoptotic PMN, in contrast to necrotic cells, is proposed to promote the resolution of inflammation. We demonstrate that the human cathelicidin LL-37 induced rapid secondary necrosis of apoptotic human PMN and identify an essential minimal region of LL-37 required for this activity. Using these LL-37-induced secondary necrotic PMN, we characterize the consequence for macrophage inflammatory responses. LL-37-induced secondary necrosis did not inhibit PMN ingestion by monocyte-derived macrophages and in contrast to expectation, was not proinflammatory. Furthermore, the anti-inflammatory effects of apoptotic PMN on activated macrophages were retained and even potentiated after LL-37-induced secondary necrosis. However, this process of secondary necrosis did induce the release of potentially harmful PMN granule contents. Thus, we suggest that LL-37 can be a potent inducer of PMN secondary necrosis during inflammation without promoting macrophage inflammation but may mediate host damage through PMN granule content release under chronic or dysregulated conditions

    The Human Cathelicidin LL-37 Preferentially Promotes Apoptosis of Infected Airway Epithelium

    Get PDF
    Cationic host defense peptides are key, evolutionarily conserved components of the innate immune system. The human cathelicidin LL-37 is an important cationic host defense peptide up-regulated in infection and inflammation, specifically in the human lung, and was shown to enhance the pulmonary clearance of the opportunistic pathogen Pseudomonas aeruginosa in vivo by as yet undefined mechanisms. In addition to its direct microbicidal potential, LL-37 can modulate inflammation and immune mechanisms in host defense against infection, including the capacity to modulate cell death pathways. We demonstrate that at physiologically relevant concentrations of LL-37, this peptide preferentially promoted the apoptosis of infected airway epithelium, via enhanced LL-37-induced mitochondrial membrane depolarization and release of cytochrome c, with activation of caspase-9 and caspase-3 and induction of apoptosis, which only occurred in the presence of both peptide and bacteria, but not with either stimulus alone. This synergistic induction of apoptosis in infected cells was caspase-dependent, contrasting with the caspase-independent cell death induced by supraphysiologic levels of peptide alone. We demonstrate that the synergistic induction of apoptosis by LL-37 and Pseudomonas aeruginosa required specific bacteria-epithelial cell interactions with whole, live bacteria, and bacterial invasion of the epithelial cell. We propose that the LL-37-mediated apoptosis of infected, compromised airway epithelial cells may represent a novel inflammomodulatory role for this peptide in innate host defense, promoting the clearance of respiratory pathogens
    corecore