89 research outputs found

    Nucleolar Proteins Suppress Caenorhabditis elegans Innate Immunity by Inhibiting p53/CEP-1

    Get PDF
    The tumor suppressor p53 has been implicated in multiple functions that play key roles in health and disease, including ribosome biogenesis, control of aging, and cell cycle regulation. A genetic screen for negative regulators of innate immunity in Caenorhabditis elegans led to the identification of a mutation in NOL-6, a nucleolar RNA-associated protein (NRAP), which is involved in ribosome biogenesis and conserved across eukaryotic organisms. Mutation or silencing of NOL-6 and other nucleolar proteins results in an enhanced resistance to bacterial infections. A full-genome microarray analysis on animals with altered immune function due to mutation in nol-6 shows increased transcriptional levels of genes regulated by a p53 homologue, CEP-1. Further studies indicate that the activation of innate immunity by inhibition of nucleolar proteins requires p53/CEP-1 and its transcriptional target SYM-1. Since nucleoli and p53/CEP-1 are conserved, our results reveal an ancient immune mechanism by which the nucleolus may regulate immune responses against bacterial pathogens

    YAP/TAZ upstream signals and downstream responses

    Get PDF

    Mucopolysaccharidosis VII

    No full text

    Intra-articular enzyme administration for joint disease in feline mucopolysaccharidosis VI: Enzyme dose and interval

    No full text
    Degenerative joint changes have been reported in human mucopolysaccharidosis VI (MPS VI) and are a prominent feature of feline MPS VI. Joint disease has proven refractory to intravenous enzyme replacement therapy (ERT) in the MPS VI cat because enzyme is unable to reach cells in cartilage. In this study, enzyme was infused directly into the intraarticular space to determine whether joint tissues are able to respond to replacement enzyme. Clearance of glycosaminoglycans from chondrocytes was observed at a dose of 10 microg recombinant human N-acetylgalactosamine-4-sulfatase (rh4S), but greater clearance was observed with higher doses. The chondrocytes at the articular surface were cleared preferentially. Lysosomal vacuolation in cruciate ligament and synovial cells also decreased upon addition of rh4S. One month after injection of rh4S, a slight reaccumulation of storage was observed at the surface of the joint, but extensive reaccumulation was observed 2 mo after injection. These results indicate that by bypassing the synovium using intraarticular ERT, significant reduction in storage material in joint tissues can be achieved. Localized ERT in the joint space provides a mechanism for delivering enzyme directly to the articular cartilage and a potential therapy for joint pathology in MPS VI
    • …
    corecore