1,961 research outputs found

    Measurement of Nuclear Magnetic Dipole Moment of Li-8 by Implantation in Metal Foils

    Get PDF
    Polarized 8Li nuclei have been produced through the 7Li(d,p) reaction using the 3.5-MeV Van de Graaff accelerator at Brookhaven National Laboratory. The observed polarization was a slowly-varying function of deuteron energy over the range 1.3-2.9 MeV, reaching a maximum of about +1.6%. The recoiling nuclei were stopped in Au, Pt and Pd foils and the effective dipole moments were measured by a resonant depolarization method. The results were 1.65362(22)µN, 1.65288(20)µN and 1.65270(30)µN respectively. These are consistent with the work of Connor, who found µ(8Li) =1.6530(8)µN in a LiF crystal. An upper limit for the 8Li quadrupole moment will also be discussed

    Observation of Quadrupole Splitting of B-12 in a Single Crystal

    Get PDF
    The quadrupole coupling of B-12 implanted in Be-9 has been observed using a single crystal of Be. One sees a narrow resonance line, the location of which depends in the normal way on the orientation of the crystalline c-axis with respect to the external magnetic field direction. The coupling constant is given by e2qQ/h = 54.9(6) kHz. This is consistent with our previous measurement using a Be foil. Using the field gradient at Be-9 lattice sites, calculated by Pomerantz and Das, one finds Q(B-12) = about 34.6 mb

    Nuclear Quadrupole Coupling of B-12 in a Single Be Crystal

    Get PDF
    Quadrupole resonance lines of β-unstable 12B have been distinctly resolved in a single crystal of Be, and have behaved properly under field reversal and variation of the angle θ between crystal c axis and external magnetic field

    An optical coherence microscope for 3-dimensional imaging in developmental biology

    Get PDF
    An optical coherence microscope (OCM) has been designed and constructed to acquire 3-dimensional images of highly scattering biological tissue. Volume-rendering software is used to enhance 3-D visualization of the data sets. Lateral resolution of the OCM is 5 mm (FWHM), and the depth resolution is 10 mm (FWHM) in tissue. The design trade-offs for a 3-D OCM are discussed, and the fundamental photon noise limitation is measured and compared with theory. A rotating 3-D image of a frog embryo is presented to illustrate the capabilities of the instrument

    Portable, High-Bandwidth Frequency-Domain Photon Migration Instrument for Tissue Spectroscopy

    Get PDF
    We describe a novel frequency-domain photon migration instrument employing direct diode laser modulation and avalanche photodiode detection, which is capable of noninvasively determinating the optical properties of biological tissues in near real time. An infinite medium diffusion model was used to extract absorption and transport scattering coefficients from 300-kHz to 800-MHz photon-density wave phase data. Optical properties measured in tissue-simulating solutions at 670 nm agreed to within 10% of those expected

    Biosystems engineering research Quarterly progress report

    Get PDF
    Biosystems engineering research on equations of motion for postural control, lens focusing and cornea models, and optical processing of biological photomicrograph

    A High-Bandwidth Frequency-Domain Photon Migration Instrument for Clinical Use

    Get PDF
    We have developed a high-bandwidth frequency-domain photon migration (FDPM) instrument which is capable of noninvasively determining the optical properties of biological tissues in near-real-time. This portable, inexpensive, diode-based instrument is unique in the sense that we employ direct diode laser modulation and avalanche photodiode detection. Diffusion models were used to extract the optical properties (absorption and transport scattering coefficients)of tissue-simulating solutions.from the 300 kHz to I GHz photon density wave data

    Helping education undergraduates to use appropriate criteria for evaluating accounts of motivation

    Get PDF
    The aim of the study was to compare students in a control group with those in a treatment group with respect to evaluative comments on psychological accounts of motivation. The treatment group systematically scrutinized the nature and interpretation of evidence that supported different accounts, and the assumptions, logic, coherence and clarity of accounts. Content analysis of 74 scripts (using three categories) showed that the control group students made more assertions than either evidential or evaluative points, whereas the treatment group used evaluative statements as often as they used assertion. The findings provide support for privileging activities that develop understanding of how knowledge might be contested, and suggest a need for further research on pedagogies to serve this end. The idea is considered that such understanding has a pivotal role in the development of critical thinking

    Limits to Performance Improvement Provided by Balanced Interferometers and Balanced Detection in OCT/OCM Instruments

    Get PDF
    We compare the dynamic range of OCT/OCM instruments configured with unbalanced interferometers, e.g., Michelson interferometers, with that of instruments utilizing balanced interferometers and balanced photodetection. We define the dynamic range (DR) as the ratio of the maximum fringe amplitude achieved with a highly reflecting surface to the root-mean-square (rms) noise. Balanced systems achieve a dynamic range 2.5 times higher than that of a Michelson interferometer, enabling an image acquisition speed roughly 6 times faster. This maximum improvement occurs at light source powers of a few milliwatts. At light source powers higher than 30 mW, the advantage in acquisition speed of balanced systems is reduced to a factor of 4. For video-rate imaging, the increased cost and complexity of a balanced system may be outweighed by the factor of 4 to 6 enhancement in image acquisition speed. We include in our analysis the beat-noise resulting from incoherent fight backscattered from the sample, which reduces the advantage of balanced systems. We attempt to resolve confusion surrounding the origin and magnitude of beat-noise , first described by L. Mandel in 1962. Beat-noise is present in both balanced and unbalanced OCT/OCM instruments
    • …
    corecore