83 research outputs found

    Resonant x-ray scattering reveals possible disappearance of magnetic order under hydrostatic pressure in the Kitaev candidate γ\gamma-Li2_2IrO3_3

    Full text link
    Honeycomb iridates such as γ\gamma-Li2_2IrO3_3 are argued to realize Kitaev spin-anisotropic magnetic exchange, along with Heisenberg and possibly other couplings. While systems with pure Kitaev interactions are candidates to realize a quantum spin liquid ground state, in γ\gamma-Li2_2IrO3_3 it has been shown that the balance of magnetic interactions leads to the incommensurate spiral spin order at ambient pressure below 38 K. We study the fragility of this state in single crystals of γ\gamma-Li2_2IrO3_3 using resonant x-ray scattering (RXS) under applied hydrostatic pressures of up to 3.0 GPa. RXS is a direct probe of the underlying electronic order, and we observe the abrupt disappearance of the qq=(0.57, 0, 0) spiral order at a critical pressure Pc=1.5 P_c = 1.5\ GPa with no accompanying change in the symmetry of the lattice. This dramatic disappearance is in stark contrast with recent studies of β\beta-Li2_2IrO3_3 that show continuous suppression of the spiral order in magnetic field; under pressure, a new and possibly nonmagnetic ground state emerges

    Ni-induced Local Distortions in La₁.₈₅Sr₀.₁₅Cu\u3csub\u3e1-y\u3c/sub\u3eNi\u3csub\u3ey\u3c/sub\u3eO₄ and their Relevance to Tc Suppression

    Get PDF
    We present results from angular-resolved x-ray-absorption fine-structure (XAFS) measurements at the Ni, La, and Sr K edges of oriented powders of La1.85Sr0.15Cu1-yNiyO4, with y=0.01, 0.03, 0.06. A special magnetic alignment procedure allowed us to measure pure ĉ- and ab-oriented XAFS at the Ni K edge in identical fluorescence geometries. Both the x-ray-absorption near-edge structure and the XAFS unequivocally show that the NiO6 octahedra are contracted along the c axis by ≈0.32Å relative to CuO6 octahedra while the in-plane distances of NiO6 and CuO6 octahedra are the same within 0.01Å. The NiO6 octahedral contraction drives the average ĉ axis contraction measured by diffraction with increasing content of Ni. The local ĉ axis shows strong spatial fluctuations, due to the different NiO6 and CuO6 octahedral configurations and the stronger bonding of a La3+ ion than a Sr2+ ion to the O(2) apical oxygens of such octahedra. We discuss the relevance of these findings to the mechanisms of loss of superconductivity at y≈0.03 and hole localization above y≈0.05 by Ni dopants

    Xafs Study of the Low-Temperature Tetragonal Phase of La₂₋ₓBaₓCuO₄: Disorder, Stripes, and T\u3csub\u3ec\u3c/sub\u3e Suppression at X=0.125

    Get PDF
    Angular dependent x-ray absorption fine structure (XAFS) measurements of all La, Ba, and Cu sites determined the origin and nature of the intrinsic disorder present in the low temperature tetragonal (LTT) structural ground state of La2-xBaxCuO4 with x=0.125,0.15 at T=10 K. Ba doping induces major local distortions that extend as far as 5 Å from its lattice site. Despite the low Ba content the large distortions significantly affect the XAFS of the majority La and Cu sites. The distribution of the local LTT tilt angle of CuO6 octahedra was directly determined from single and multiple scattering contributions to the XAFS of La and Cu sites. This angle, which regulates the strength of electron-lattice and spin-spin coupling in this material, was found to exhibit large, random fluctuations with rms [〈(θ-〈θ〉)2〉] 1/2≈2〈θ〉, 〈θ〉 being the average tilt angle determined by diffraction techniques. These fluctuations originate in the large, random, static disorder introduced with Ba doping. Their presence has implications for the plausibility of a mobility gap causing Tc suppression at x=0.125 in only the LTT phase, and for the correlation length of the postulated charge and spin stripes

    Dopant Structural Distortions in High-temperature Superconductors: An Active or a Passive Role?

    Get PDF
    The parent compounds of high-temperature superconductors, such as YBa2Cu3O6 and La2CuO4, are strongly interacting electron systems, rendering them insulators with Mott-Hubbard gaps of a few electronvolts. Charge carriers (holes) are introduced by chemical doping, causing an insulator-metal (IM) transition and, at low temperatures, superconductivity. the role of dopants is widely seen as limited to the introduction of holes into the CuO2 planes (i.e. occupying electronic states derived from Cu and O 2px,y atomic orbitals). Most theories of high-Tc superconductivity deal with pairing interactions between these planar holes. Local distortions around dopants are poorly understood, because of the experimental difficulty in obtaining such information, particularly at low doping. This has resulted in the neglect, in most theories, of the effect of such distortions on the chemical and electronic structure of high-Tc superconductors. Angular-resolved X-ray absorption fine structure (XAFS) spectroscopy on oriented samples is an ideal technique to elucidate the dopant distortions. Element specificity, together with a large orientation dependence of the XAFS signal in these layered structures, allows the local structure around dopants to be resolved. Results are presented here on (Sr, Ba) and Ni dopants, which substitute at the La and Cu sites, respectively, of insulating La2CuO4. the relevance of the measured local distortions for a complete understanding of the normal and superconducting properties of cuprates is discussed

    Decoupling of the Antiferromagnetic and Insulating States in Tb doped Sr2IrO4

    Get PDF
    Sr2IrO4 is a spin-orbit coupled insulator with an antiferromagnetic (AFM) transition at TN=240 K. We report results of a comprehensive study of single-crystal Sr2Ir1-xTbxO4. This study found that mere 3% (x=0.03) tetravalent Tb4+(4f7) substituting for Ir4+ (rather than Sr2+) completely suppresses the long-range collinear AFM transition but retains the insulating state, leading to a phase diagram featuring a decoupling of magnetic interactions and charge gap. The insulating state at x=0.03 is characterized by an unusually large specific heat at low temperatures and an incommensurate magnetic state having magnetic peaks at (0.95, 0, 0) and (0, 0.95, 0) in the neutron diffraction, suggesting a spiral or spin density wave order. It is apparent that Tb doping effectively changes the relative strength of the SOI and the tetragonal CEF and enhances the Hund's rule coupling that competes with the SOI, and destabilizes the AFM state. However, the disappearance of the AFM accompanies no metallic state chiefly because an energy level mismatch for the Ir and Tb sites weakens charge carrier hopping and renders a persistent insulating state. This work highlights an unconventional correlation between the AFM and insulating states in which the magnetic transition plays no critical role in the formation of the charge gap in the iridate.Comment: 8 figure
    corecore