69 research outputs found

    Reconnection of Colliding Cosmic Strings

    Full text link
    For vortex strings in the Abelian Higgs model and D-strings in superstring theory, both of which can be regarded as cosmic strings, we give analytical study of reconnection (recombination, inter-commutation) when they collide, by using effective field theories on the strings. First, for the vortex strings, via a string sigma model, we verify analytically that the reconnection is classically inevitable for small collision velocity and small relative angle. Evolution of the shape of the reconnected strings provides an upper bound on the collision velocity in order for the reconnection to occur. These analytical results are in agreement with previous numerical results. On the other hand, reconnection of the D-strings is not classical but probabilistic. We show that a quantum calculation of the reconnection probability using a D-string action reproduces the nonperturbative nature of the worldsheet results by Jackson, Jones and Polchinski. The difference on the reconnection -- classically inevitable for the vortex strings while quantum mechanical for the D-strings -- is suggested to originate from the difference between the effective field theories on the strings.Comment: 29 pages, 14 eps figures, JHEP style; references added, typos correcte

    Strings between branes

    Full text link
    D-brane configurations containing fundamental strings are constructed as classical solutions of Yang-Mills theory. The fundamental strings in these systems stretch between D-branes. In the case of D1-branes, this construction gives smooth (classical) resolutions of string junctions and string networks. Using a non-abelian Yang-Mills analysis of the string current, the string charge density is computed and is shown to have support in the region between the D-brane world-volumes. The 't Hooft-Polyakov monopole is analyzed using similar methods, and is shown to contain D-strings whose flux has support off the D-brane world-volume defined by the Higgs scalar field, when this field is interpreted in terms of a transverse dimension. The constructions presented here are used to give a qualitative picture of tachyon condensation in the Yang-Mills limit, where fundamental strings and lower-dimensional D-branes arise in a volume of space-time where brane-antibrane annihilation has occurred.Comment: 35 pages, 16 eps figures, JHEP style; v2: a comment adde

    Realization of Brane Descent Relations in Effective Theories

    Get PDF
    We examine Sen's descent relations among (non-)BPS D-branes by using low energy effective field theories of DpDpbar system. We find that the fluctuation around the kink solution reproduces the low energy matter content on a non-BPS D(p-1)-brane. The effective action for these fluctuation modes turns out to be a generalization of Minahan-Zwiebach model. In addition, it is shown that the fluctuations around the vortex solution consist of massless fields on a BPS D(p-2)-brane and they are subject to Dirac-Born-Infeld action. We find the universality that the above results do not refer to particular forms of the effective action.Comment: 24 pages, LaTeX, 1 eps figure; v2:minor correction

    Recombination of Intersecting D-branes by Local Tachyon Condensation

    Full text link
    We provide a simple low energy description of recombination of intersecting D-branes using super Yang-Mills theory. The recombination is realized by condensation of an off-diagonal tachyonic fluctuation localized at the intersecting point. The recombination process is equivalent to brane-antibrane annihilation, thus our result confirms Sen's conjecture on tachyon condensation, although we work in the super Yang-Mills theory whose energy scale is much lower than alpha'. We also discuss the decay width of non-parallelly separated D-branes.Comment: 24 pages, 5 figures, JHEP style. references added, minor correction

    Higher Dimensional Recombination of Intersecting D-branes

    Full text link
    We study recombinations of D-brane systems intersecting at more than one angle using super Yang-Mills theory. We find the condensation of an off-diagonal tachyon mode relates to the recombination, as was clarified for branes at one angle in hep-th/0303204. For branes at two angles, after the tachyon mode between two D2-branes condensed, D2-brane charge is distributed in the bulk near the intersection point. We also find that, when two intersection angles are equal, the off-diagonal lowest mode is massless, and a new stable non-abelian configuration, which is supersymmetric up to a quadratic order in the fluctuations, is obtained by the deformation by this mode.Comment: 18 pages, 2 figures, JHEP style. v3:references added, minor corrections, English improve

    Time Evolution via S-branes

    Full text link
    Using S(pacelike)-branes defined through rolling tachyon solutions, we show how the dynamical formation of D(irichlet)-branes and strings in tachyon condensation can be understood. Specifically we present solutions of S-brane actions illustrating the classical confinement of electric and magnetic flux into fundamental strings and D-branes. The role of S-branes in string theory is further clarified and their RR charges are discussed. In addition, by examining ``boosted'' S-branes, we find what appears to be a surprising dual S-brane description of strings and D-branes, which also indicates that the critical electric field can be considered as a self-dual point in string theory. We also introduce new tachyonic S-branes as Euclidean counterparts to non-BPS branes.Comment: 62 pages, 10 figures. v2 references adde

    Condensation of Tubular D2-branes in Magnetic Field Background

    Full text link
    It is known that in the Minkowski vacuum a bunch of IIA superstrings with D0-branes can be blown-up to a supersymmetric tubular D2-brane, which is supported against collapse by the angular momentum generated by crossed electric and magnetic Born-Infeld (BI) fields. In this paper we show how the multiple, smaller tubes with relative angular momentum could condense to a single, larger tube to stabilize the system. Such a phenomena could also be shown in the systems under the Melvin magnetic tube or uniform magnetic field background. However, depending on the magnitude of field strength, a tube in the uniform magnetic field background may split into multiple, smaller tubes with relative angular momentum to stabilize the system.Comment: Latex 10 pages, mention the dynamical joining of the tubes, modify figure

    Induced Gravity on Intersecting Branes

    Full text link
    We establish Einstein-Hilbert gravity couplings in the effective action for Intersecting Brane Worlds. The four-dimensional induced Planck mass is determined by calculating graviton scattering amplitudes at one-loop in the string perturbation expansion. We derive a general formula linking the induced Planck mass for N=1 supersymmetric backgrounds directly to the string partition function. We carry out the computation explicitly for simple examples, obtaining analytic expressions.Comment: references added, minor changes to discussion of path integral normalization on page
    • …
    corecore