58 research outputs found

    Tunability of Andreev levels via spin-orbit coupling in Zeeman-split Josephson junctions

    Get PDF
    We study Andreev reflection and Andreev levels ε\varepsilon in Zeeman-split superconductor/Rashba wire/Zeeman-split superconductor junctions by solving the Bogoliubov de-Gennes equation. We theoretically demonstrate that the Andreev levels ε\varepsilon can be controlled by tuning either the strength of Rashba spin-orbit interaction or the relative direction of the Rashba spin-orbit interaction and the Zeeman field. In particular, it is found that the magnitude of the band splitting is tunable by the strength of the Rashba spin-orbit interaction and the rength of the wire, which can be interpreted by a spin precession in the Rashba wire. We also find that if the Zeeman field in the superconductor has the component parallel to the direction of the junction, the ε\varepsilon-ϕ\phi curve becomes asymmetric with respect to the superconducting phase difference ϕ\phi. Whereas the Andreev reflection processes associated with each pseudospin band are sensitive to the relative orientation of the spin-orbit field and the exchange field, the total electric conductance interestingly remains invariant.Comment: 10 pages, 8 figure

    Liquid-Liquid Interface Can Promote Micro-Scale Thermal Marangoni Convection in Liquid Binary Mixtures

    Get PDF
    Liquid-liquid phase separation, a physical transition in which a homogeneous solution spontaneously demixes into two coexisting liquid phases, has been a key topic in the thermodynamics of two-component systems and may find applications in separation, drug delivery, and protein crystallization. Here we applied a microscale temperature gradient using optothermal heating of a gold nanoparticle to overcome the experimental difficulties inherent in homogeneous heating: we aimed at highlighting precise structural development by avoiding randomly nucleating/growing microdomains. In response to laser illumination, a single gold nanoparticle immersed in a binary mixture of aqueous 2,6-dimethylpiridine (lutidine) and N-isopropylpropionamide (NiPPA) was clearly sensitive to the phase transition of the surrounding liquid as demonstrated by light scattering signals, spectral red-shifts and bright-spot images. The local phase separation encapsulating the gold nanoparticle resulted in immediate formation and growth of an organic-rich droplet which was confirmed by Raman spectroscopy. Remarkably, the droplet was stable under a non-equilibrium steady-state heating condition because of strong thermal confinement. Microdroplet growth was ascribed to thermocapillary flow induced by a newly formed liquid-liquid interface around the hot gold nanoparticle. Based upon a tracer experiment and numerical simulation, it is deduced that the transport of solute to the high temperature area is driven by this thermocapillary flow. This study enhances our understanding of phase separation in binary mixtures induced by microscale temperature confinement

    Comprehensive analysis of metabolites produced by co-cultivation of Bifidobacterium breve MCC1274 with human iPS-derived intestinal epithelial cells

    Get PDF
    Examining how host cells affect metabolic behaviors of probiotics is pivotal to better understand the mechanisms underlying the probiotic efficacy in vivo. However, studies to elucidate the interaction between probiotics and host cells, such as intestinal epithelial cells, remain limited. Therefore, in this study, we performed a comprehensive metabolome analysis of a co-culture containing Bifidobacterium breve MCC1274 and induced pluripotent stem cells (iPS)-derived small intestinal-like cells. In the co-culture, we observed a significant increase in several amino acid metabolites, including indole-3-lactic acid (ILA) and phenyllactic acid (PLA). In accordance with the metabolic shift, the expression of genes involved in ILA synthesis, such as transaminase and tryptophan synthesis-related genes, was also elevated in B. breve MCC1274 cells. ILA production was enhanced in the presence of purines, which were possibly produced by intestinal epithelial cells (IECs). These findings suggest a synergistic action of probiotics and IECs, which may represent a molecular basis of host-probiotic interaction in vivo

    Serum Wisteria Floribunda Agglutinin-Positive Mac-2 Binding Protein Values Predict the Development of Hepatocellular Carcinoma among Patients with Chronic Hepatitis C after Sustained Virological Response

    Get PDF
    Measurement of Wisteria floribundaagglutinin-positive human Mac-2 binding protein (WFA+-M2BP) in serum was recently shown to be a noninvasive method to assess liver fibrosis. The aim of this study was to evaluate the utility of serum WFA+-M2BP values to predict the development of hepatocellular carcinoma (HCC) in patients who achieved a sustained virological response (SVR) by interferon treatment. For this purpose, we retrospectively analyzed 238 patients with SVR who were treated with interferon in our department. Serum WFA+-M2BP values were measured at pre-treatment (pre-Tx), post-treatment (24 weeks after completion of interferon; post-Tx), the time of HCC diagnosis, and the last clinical visit. Of 238 patients with SVR, HCC developed in 16 (6.8%) patients. The average follow-up period was 9.1 years. The cumulative incidence of HCC was 3.4% at 5 years and 7.5% at 10 years. The median pre-Tx and post-Tx WFA+-M2BP values were 1.69 (range: 0.28 to 12.04 cutoff index (COI)) and 0.80 (range: 0.17 to 5.29 COI), respectively. The WFA+-M2BP values decreased significantly after SVR (P 60 years), sex (male), pre-Tx platelet count ( 2.0 COI) were associated with the development of HCC after SVR. Conclusion: Post-Tx WFA+-M2BP (> 2.0 COI) is associated with the risk for development of HCC among patients with SVR. The WFA+-M2BP values could be a new predictor for HCC after SVR
    • …
    corecore