2 research outputs found

    Disentangling magnetic hardening and molecular spin chain contributions to exchange bias in ferromagnet/molecule bilayers

    Full text link
    We performed SQUID and FMR magnetometry experiments to clarify the relationship between two reported magnetic exchange effects arising from interfacial spin-polarized charge transfer within ferromagnetic metal (FM)/molecule bilayers: the magnetic hardening effect, and spinterface-stabilized molecular spin chains. To disentangle these effects, both of which can affect the FM magnetization reversal, we tuned the metal phthalocyanine molecule central site's magnetic moment to selectively enhance or suppress the formation of spin chains within the molecular film. We find that both effects are distinct, and additive. In the process, we 1) extended the list of FM/molecule candidate pairs that are known to generate magnetic exchange effects, 2) experimentally confirmed the predicted increase in anisotropy upon molecular adsorption; and 3) showed that spin chains within the molecular film can enhance magnetic exchange. This magnetic ordering within the organic layer implies a structural ordering. Thus, by distengangling the magnetic hardening and exchange bias contributions, our results confirm, as an echo to progress regarding inorganic spintronic tunnelling, that the milestone of spintronic tunnelling across structurally ordered organic barriers has been reached through previous magnetotransport experiments. This paves the way for solid-state devices studies that exploit the quantum physical properties of spin chains, notably through external stimuli.Comment: Non

    Spin-Dependent Hybridization between Molecule and Metal at Room Temperature through Interlayer Exchange Coupling

    No full text
    We experimentally and theoretically show that the magnetic coupling at room temperature between paramagnetic Mn within manganese phthalocyanine molecules and a Co layer persists when separated by a Cu spacer. The molecule’s magnetization amplitude and direction can be tuned by varying the Cu–spacer thickness and evolves according to an interlayer exchange coupling mechanism. <i>Ab initio</i> calculations predict a highly spin-polarized density of states at the Fermi level of this metal-molecule interface, thereby strengthening prospective spintronics applications
    corecore