14 research outputs found

    Lumped parameter thermal model for segmental translator linear switched reluctance motor

    No full text
    Abstract The segmental translator linear switched reluctance motor (STLSRM) is a special type of linear switched reluctance motor (LSRM) that has more output power than its conventional type. Therefore, it can be a good choice for certain applications. Heat is one of the factors limiting the output in machines. Therefore, predicting the thermal distribution of machine is as important as the magnetic design. A comprehensive thermal model is presented based on the lumped parameter approach for STLSRM, which predicts temperature distribution in different parts of this motor, including slot winding, end‐winding, stator pole, stator yoke, and the moving part. Considering that the proposed thermal model depends on dimensions and materials used in machine, it can be used for other designs of the STLSRM. The presented thermal model is applied to a typical STLSRM and temperature is determined in its different parts. The simulation results are then compared with the results of 3‐D thermal modelling based on the finite element method (FEM) for validation

    Electromagnetic-thermal design optimization of the brushless doubly fed induction generator

    No full text
    In view of its special features, the brushless doubly fed induction generator (BDFIG) shows high potentials to be employed as a variable-speed drive or wind generator. However, the machine suffers from low efficiency and power factor and also high level of noise and vibration due to spatial harmonics. These harmonics arise mainly from rotor winding configuration, slotting effects, and saturation. In this paper, analytical equations are derived for spatial harmonics and their effects on leakage flux, additional loss, noise, and vibration. Using the derived equations and an electromagnetic-thermal model, a simple design procedure is presented, while the design variables are selected based on sensitivity analyses. A multiobjective optimization method using an imperialist competitive algorithm as the solver is established to maximize efficiency, power factor, and power-to-weight ratio, as well as to reduce rotor spatial harmonic distortion and voltage regulation simultaneously. Several constraints on dimensions, magnetic flux densities, temperatures, vibration level, and converter voltage and rating are imposed to ensure feasibility of the designed machine. The results show a significant improvement in the objective function. Finally, the analytical results of the optimized structure are validated using finite-element method and are compared to the experimental results of the D180 frame size prototype BDFIG

    A ZVS-Resonant Bifilar Drive Circuit for SRM with a reduction in Stress Voltage of Switches

    No full text
    Switched Reluctance Motors (SRMs) are widely used in high-speed and low voltage applications because of their attractive features such as robustness and simplicity. No winding on the rotor of this type of motors allows reaching high speed which is desired for many applications. Drive circuits of SRNIs also play an important role in their performance and operation. In this paper, a new bifilar drive circuit for this type of motors has been proposed. This novel configuration has been tested and investigated by PSIM software. Results show that the new bifilar drive circuit highly reduces the voltage stresses on semiconductor switches, and also considerably reduces the switching losses which are very important in low voltage applications. Finally, a comparison between this new drive circuit and some other common configurations is presented

    Optimal Operation and Size for an Energy Hub with CCHP

    No full text
    corecore