345 research outputs found

    Densidades, tamanho de grupo e reprodução de emas no Pantanal Sul.

    Get PDF
    Este estudo sobre a ecologia das emas no Pantanal foi uma primeira experiĂȘncia na regiĂŁo, e teve o objetivo de avaliar as possibilidades de utilização da espĂ©cie nas fazendas do Pantanal da NhecolĂąndia. A população estimada, atravĂ©s de um levantamento aĂ©reo, foi de 6.500 emas adultas, em todo o Pantanal. Na fazenda Nhumirim foram encontrados 73 grupos de emas durante o estudo, e o nĂșmero de grupos variou ao longo do ano, de 2 a 17 indivĂ­duos. A razĂŁo sexual foi de 1 macho para 3,6 fĂȘmeas. Os ninhos foram feitos pelos machos, em ĂĄreas abertas e em ĂĄreas fechadas. Nos 2 anos do estudo foram encontrados 26 ninhos, e o nĂșmero de ovos variou de 5 a 25. O principal predador dos ninhos foi o tatu-peba. A população de emas no Pantanal estĂĄ bem conservada e existe possibilidade do uso sustentado da espĂ©cie.bitstream/item/37302/1/BP55.pd

    Impact of permeability evolution in igneous sills on hydrothermal flow and hydrocarbon transport in volcanic sedimentary basins

    Get PDF
    Sills emplaced in organic-rich sedimentary rocks trigger the generation and migration of hydrocarbons in volcanic sedimentary basins. Based on seismic and geological observations, numerical modeling studies of hydrothermal flow around sills show that thermogenic methane is channeled below the intrusion towards its tip, where hydrothermal vents nucleate and transport methane to the surface. However, these models typically assume impermeable sills and ignore potential effects of permeability evolution in cooling sills, e.g., due to fracturing. Here, we combine a geological field study of a volcanic basin (NeuquĂ©n Basin, Argentina) with a hybrid finite-element–finite-volume method (FEM–FVM) of numerical modeling of hydrothermal flow around a sill, including hydrocarbon generation and transport. Our field observations show widespread veins within sills composed of graphitized bitumen and cooling joints filled with solid bitumen or fluidized shale. Raman spectroscopy indicates graphitization at temperatures between 350 and 500 ∘C, suggesting fluid flow within the intrusions during cooling. This finding motivates our modeling setup, which investigates flow patterns around and through intrusions that become porous and permeable upon solidification. The results show three flow phases affecting the transport of hydrocarbons generated in the contact aureole: (1) contact-parallel flow toward the sill tip prior to solidification, (2) upon complete solidification, sudden vertical “flushing” of overpressured hydrocarbon-rich fluids from the lower contact aureole towards and into the hot sill along its entire length, and (3) stabilization of hydrocarbon distribution and fading hydrothermal flow. In low-permeability host rocks, hydraulic fracturing facilitates flow and hydrocarbon migration toward the sill by temporarily elevating porosity and permeability. Up to 7.5 % of the generated methane is exposed to temperatures &gt;400 ∘C in the simulations and may thus be permanently stored as graphite in or near the sill. Porosity and permeability creation within cooling sills may impact hydrothermal flow, hydrocarbon transport, and venting in volcanic basins, as it considerably alters the fluid pressure configuration, provides vertical flow paths, and helps to dissipate overpressure below the sills.</p

    Distinct degassing pulses during magma invasion in the stratified Karoo Basin – New insights from hydrothermal fluid flow modelling

    Get PDF
    Magma emplacement in organic‐rich sedimentary basins is a main driver of past environmental crises. Using a 2D numerical model, we investigate the process of thermal cracking in contact aureoles of cooling sills and subsequent transport and emission of thermogenic methane by hydrothermal fluids. Our model includes a Mohr‐Coulomb failure criterion to initiate hydrofracturing and a dynamic porosity/permeability. We investigate the Karoo Basin, taking into account host‐rock material properties from borehole data, realistic total organic carbon content, and different sill geometries. Consistent with geological observations, we find that thermal plumes quickly rise at the edges of saucer‐shaped sills, guided along vertically fractured high permeability pathways. Contrastingly, less focused and slower plumes rise from the edges and the central part of flat‐lying sills. Using a novel upscaling method based on sill‐to‐sediment ratio we find that degassing of the Karoo Basin occurred in two distinct phases during magma invasion. Rapid degassing triggered by sills emplaced within the top 1.5 km emitted ~1.6·103 Gt of thermogenic methane, while thermal plumes originating from deeper sills, carrying a 12‐times greater mass of methane, may not reach the surface. We suggest that these large quantities of methane could be re‐mobilized by the heat provided by neighboring sills. We conclude that the Karoo LIP may have emitted as much as ~22.3·103 Gt of thermogenic methane in the half million years of magmatic activity, with emissions up to 3 Gt/year. This quantity of methane and the emission rates can explain the negative ÎŽ13C excursion of the Toarcian environmental crisis. Key Points Sill geometry and emplacement depth as well as intruded host rock type are the main factors controlling methane mobilization and degassing Dehydration‐related porosity increase and pore‐pressure‐induced hydrofracturing are important mechanisms for a quick transport of methane from sill to the surface The Karoo Basin may have degassed ~22.3·103 Gt of thermogenic methane in the half million years of magmatic activit

    Arc magmas sourced from melange diapirs in subduction zones

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 5 (2012): 862-867, doi:10.1038/ngeo1634.At subduction zones, crustal material is recycled back into the mantle. A certain proportion, however, is returned to the overriding plate via magmatism. The magmas show a characteristic range of compositions that have been explained by three-component mixing in their source regions: hydrous fluids derived from subducted altered oceanic crust and components derived from the thin sedimentary veneer are added to the depleted peridotite in the mantle beneath the volcanoes. However, currently no uniformly accepted model exists for the physical mechanism that mixes the three components and transports them from the slab to the magma source. Here we present an integrated physico-chemical model of subduction zones that emerges from a review of the combined findings of petrology, modelling, geophysics, and geochemistry: Intensely mixed metamorphic rock formations, so-called mélanges, form along the slab-mantle interface and comprise the characteristic trace-element patterns of subduction-zone magmatic rocks. We consider mélange formation the physical mixing process that is responsible for the geochemical three-component pattern of the magmas. Blobs of low-density mélange material, so-called diapirs, rise buoyantly from the surface of the subducting slab and provide a means of transport for well-mixed materials into the mantle beneath the volcanoes, where they produce melt. Our model provides a consistent framework for the interpretation of geophysical, petrological and geochemical data of subduction zones.H.M. was funded by the J. LamarWorzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists. Funding from NSF grant #1119403 (G. Harlow) is acknowledged.2013-05-1
    • 

    corecore