232 research outputs found

    Learned changes in outcome associability

    Get PDF
    When a cue reliably predicts an outcome, the associability of that cue will change. Associative theories of learning propose this change will persist even when the same cue is paired with a different outcome. These theories, however, do not extend the same privilege to an outcome; an outcome’s learning history is deemed to have no bearing on subsequent new learning involving that outcome. Two experiments were conducted which sought to investigate this assumption inherent in these theories using a serial letter-prediction task. In both experiments participants were exposed, in Stage 1, to a predictable outcome (‘X’) and an unpredictable outcome (‘Z’). In Stage 2 participants were exposed to the same outcomes preceded by novel cues which were equally predictive of both outcomes. Both experiments revealed that participants’ learning toward the previously predictable outcome was more rapid in Stage 2 than the previously unpredicted outcome. The implications of these results for theories of associative learning are discussed

    Level Density of a Bose Gas and Extreme Value Statistics

    Full text link
    We establish a connection between the level density of a gas of non-interacting bosons and the theory of extreme value statistics. Depending on the exponent that characterizes the growth of the underlying single-particle spectrum, we show that at a given excitation energy the limiting distribution function for the number of excited particles follows the three universal distribution laws of extreme value statistics, namely Gumbel, Weibull and Fr\'echet. Implications of this result, as well as general properties of the level density at different energies, are discussed.Comment: 4 pages, no figure

    Fault Tolerance in Parity-State Linear Optical Quantum Computing

    Get PDF
    We use a combination of analytical and numerical techniques to calculate the noise threshold and resource requirements for a linear optical quantum computing scheme based on parity-state encoding. Parity-state encoding is used at the lowest level of code concatenation in order to efficiently correct errors arising from the inherent nondeterminism of two-qubit linear-optical gates. When combined with teleported error-correction (using either a Steane or Golay code) at higher levels of concatenation, the parity-state scheme is found to achieve a saving of approximately three orders of magnitude in resources when compared to a previous scheme, at a cost of a somewhat reduced noise threshold.Comment: LaTeX, 10 pages, introduction updated for journal submissio

    Lower bounds on the complexity of simulating quantum gates

    Get PDF
    We give a simple proof of a formula for the minimal time required to simulate a two-qubit unitary operation using a fixed two-qubit Hamiltonian together with fast local unitaries. We also note that a related lower bound holds for arbitrary n-qubit gates.Comment: 6 page

    A Bio-Logical Theory of Animal Learning

    Get PDF
    This article provides the foundation for a new predictive theory of animal learning that is based upon a simple logical model. The knowledge of experimental subjects at a given time is described using logical equations. These logical equations are then used to predict a subject’s response when presented with a known or a previously unknown situation. This new theory suc- cessfully anticipates phenomena that existing theories predict, as well as phenomena that they cannot. It provides a theoretical account for phenomena that are beyond the domain of existing models, such as extinction and the detection of novelty, from which “external inhibition” can be explained. Examples of the methods applied to make predictions are given using previously published results. The present theory proposes a new way to envision the minimal functions of the nervous system, and provides possible new insights into the way that brains ultimately create and use knowledge about the world

    Brokered Graph State Quantum Computing

    Full text link
    We describe a procedure for graph state quantum computing that is tailored to fully exploit the physics of optically active multi-level systems. Leveraging ideas from the literature on distributed computation together with the recent work on probabilistic cluster state synthesis, our model assigns to each physical system two logical qubits: the broker and the client. Groups of brokers negotiate new graph state fragments via a probabilistic optical protocol. Completed fragments are mapped from broker to clients via a simple state transition and measurement. The clients, whose role is to store the nascent graph state long term, remain entirely insulated from failures during the brokerage. We describe an implementation in terms of NV-centres in diamond, where brokers and clients are very naturally embodied as electron and nuclear spins.Comment: 5 pages, 3 figure

    Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white vitis vinifera wine grapes

    Get PDF
    A non-destructive fluorescence-based technique for evaluating Vitis vinifera L. grape maturity using a portable sensor (Multiplex ®) is presented. It provides indices of anthocyanins and chlorophyll in Cabernet Sauvignon, Merlot and Sangiovese red grapes and of flavonols and chlorophyll in Vermentino white grapes. The good exponential relationship between the anthocyanin index and the actual anthocyanin content determined by wet chemistry was used to estimate grape anthocyanins from in field sensor data during ripening. Marked differences were found in the kinetics and the amount of anthocyanins between cultivars and between seasons. A sensor-driven mapping of the anthocyanin content in the grapes, expressed as g/kg fresh weight, was performed on a 7-ha vineyard planted with Sangiovese. In the Vermentino, the flavonol index was favorably correlated to the actual content of berry skin flavonols determined by means of HPLC analysis of skin extracts. It was used to make a non-destructive estimate of the evolution in the flavonol concentration in grape berry samplings. The chlorophyll index was inversely correlated in linear manner to the total soluble solids (°Brix): it could, therefore, be used as a new index of technological maturity. The fluorescence sensor (Multiplex) possesses a high potential for representing an important innovative tool for controlling grape maturity in precision viticulture

    Socio-semiotics and the symbiosis of humans, horses, and objects in later Iron Age Britain

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Archaeological Journal on 14/03/2018, available online: https://www.tandfonline.com/doi/full/10.1080/00665983.2018.1441105Using an approach derived from material culture studies and semiotics, this paper addresses possible relationships between humans and horses in the British Iron Age.Through a study of the dominance of horse imagery found on Iron Age British coinage, specifically the Western coinage traditionally attributed to the 'Dobunni', the author explores how it may reflect possible relationships between humans and horses and their personhood therein. Drawing on wider faunal and metalwork evidence it is argued that these coins could be interpreted as a manifestation of the complex perspectives surrounding a symbiotic relationship between humans and horses

    Extra-Visual Functional and Structural Connection Abnormalities in Leber's Hereditary Optic Neuropathy

    Get PDF
    We assessed abnormalities within the principal brain resting state networks (RSNs) in patients with Leber's hereditary optic neuropathy (LHON) to define whether functional abnormalities in this disease are limited to the visual system or, conversely, tend to be more diffuse. We also defined the structural substrates of fMRI changes using a connectivity-based analysis of diffusion tensor (DT) MRI data. Neuro-ophthalmologic assessment, DT MRI and RS fMRI data were acquired from 13 LHON patients and 13 healthy controls. RS fMRI data were analyzed using independent component analysis and SPM5. A DT MRI connectivity-based parcellation analysis was performed using the primary visual and auditory cortices, bilaterally, as seed regions. Compared to controls, LHON patients had a significant increase of RS fluctuations in the primary visual and auditory cortices, bilaterally. They also showed decreased RS fluctuations in the right lateral occipital cortex and right temporal occipital fusiform cortex. Abnormalities of RS fluctuations were correlated significantly with retinal damage and disease duration. The DT MRI connectivity-based parcellation identified a higher number of clusters in the right auditory cortex in LHON vs. controls. Differences of cluster-centroid profiles were found between the two groups for all the four seeds analyzed. For three of these areas, a correspondence was found between abnormalities of functional and structural connectivities. These results suggest that functional and structural abnormalities extend beyond the visual network in LHON patients. Such abnormalities also involve the auditory network, thus corroborating the notion of a cross-modal plasticity between these sensory modalities in patients with severe visual deficits
    corecore