211 research outputs found
Slave-Boson Mean-Field Theory of the Antiferromagnetic State in the Doubly Degenerate Hubbard Model - the Half-Filled Case -
The antiferromagnetic ground state of the half-filled Hubbard model with the
doubly degenerate orbital has been studied by using the slave-boson mean-field
theory which was previously proposed by the present author. Numerical
calculations for the simple cubic model have shown that the metal-insulator
transition does not take place except at the vanishing interaction point, in
strong contrast with its paramagnetic solution. The energy gap in the density
of states of the antiferromagnetic insulator is much reduced by the effect of
electron correlation. The exchange interaction plays an important role in
the antiferromagnetism: although for the sublattice magnetic moment
in our theory is fairly smaller than obtained in the Hartree-Fock
approximation, for (: the Coulomb interaction) is increased
to become comparable to . Surprisingly, the antiferromagnetic state is
easily destroyed if a small, negative exchange interaction () is
introduced.Comment: Latex 18 pages, 12 figures available on request to
[email protected] Note: published in Phys. Rev. B with some minor
modification
The Metal-Insulator Transition in the Doubly Degenerate Hubbard Model
A systematic study has been made on the metal-insulator (MI) transition of
the doubly degenerate Hubbard model (DHM) in the paramagnetic ground state, by
using the slave-boson mean-field theory which is equivalent to the Gutzwiller
approximation (GA). For the case of infinite electron-electron interactions, we
obtain the analytic solution, which becomes exact in the limit of infinite
spatial dimension. On the contrary, the finite-interaction case is investigated
by numerical methods with the use of the simple-cubic model with the
nearest-neighbor hopping. The mass-enhancement factor, , is shown to
increase divergently as one approaches the integer fillings (), at
which the MI transition takes place, being the total number of electrons.
The calculated dependence of is compared with the observed
specific-heat coefficient, , of which is reported
to significantly increase as approaches unity.Comment: Latex 16 pages, 10 ps figures included, published in J. Phys. Soc.
Jpn. with some minor modifications. ([email protected]
Slave-Boson Functional-Integral Approach to the Hubbard Model with Orbital Degeneracy
A slave-boson functional-integral method has been developed for the Hubbard
model with arbitrary, orbital degeneracy . Its saddle-point mean-field
theory is equivalent to the Gutzwiller approximation, as in the case of
single-band Hubbard model. Our theory is applied to the doubly degenerate () model, and numerical calculations have been performed for this model in the
paramagnetic states. The effect of the exchange interaction on the
metal-insulator (MI) transition is discussed. The critical interaction for the
MI transition is analytically calculated as functions of orbital degeneracy and
electron occupancy.Comment: Latex 20 pages, 9 figures available on request to
[email protected] Note: published in J. Physical Society of Japan with
some minor modification
Origin of the Charge-Orbital Stripe Structure in La_(1-x)Ca_(x)MnO_(3) (x=1/2, 2/3)
We propose the origin of the charge-ordered stripe structure with the orbital
ordering observed experimentally in La_(1-x)Ca_(x)MnO_(3) (x=1/2, 2/3), in
which the long-range Coulomb interaction plays an essential role. We study a
Hubbard model with doubly-degenerate e_g orbitals, and treat the on-site
Coulomb interaction (U) and the nearest-neighbor one (V) with the Hartree-Fock
approximation. Both the charge and orbital ordering structures observed in
experiments are reproduced in a wide region of the U-V phase diagram determined
by the present study. The stability of the orbital ordering is also confirmed
by the perturbation theory.Comment: 4 pages, 5 Postscript figures, REVTeX, submitted to Phys. Rev. Let
A Quantum Monte Carlo Method and Its Applications to Multi-Orbital Hubbard Models
We present a framework of an auxiliary field quantum Monte Carlo (QMC) method
for multi-orbital Hubbard models. Our formulation can be applied to a
Hamiltonian which includes terms for on-site Coulomb interaction for both
intra- and inter-orbitals, intra-site exchange interaction and energy
differences between orbitals. Based on our framework, we point out possible
ways to investigate various phase transitions such as metal-insulator, magnetic
and orbital order-disorder transitions without the minus sign problem. As an
application, a two-band model is investigated by the projection QMC method and
the ground state properties of this model are presented.Comment: 10 pages LaTeX including 2 PS figures, to appear in J.Phys.Soc.Jp
Effect of short range order on electronic and magnetic properties of disordered Co based alloys
We here study electronic structure and magnetic properties of disordered CoPd
and CoPt alloys using Augmented Space Recursion technique coupled with the
tight-binding linearized muffin tin orbital (TB-LMTO) method. Effect of short
range ordering present in disordered phase of alloys on electronic and magnetic
properties has been discussed. We present results for magnetic moments, Curie
temperatures and electronic band energies with varying degrees of short range
order for different concentrations of Co and try to understand and compare the
magnetic properties and ordering phenomena in these systems.Comment: 15 pages,17 postscript figures,uses own style file
Strong-coupling expansion for the Hubbard model in arbitrary dimension using slave bosons
A strong-coupling expansion for the antiferromagnetic phase of the Hubbard
model is derived in the framework of the slave-boson mean-field approximation.
The expansion can be obtained in terms of moments of the density of states of
freely hopping electrons on a lattice, which in turn are obtained for
hypercubic lattices in arbitrary dimension. The expansion is given for the case
of half-filling and for the energy up to fifth order in the ratio of hopping
integral over on-site interaction , but can straightforwardly be
generalized to the non-half-filled case and be extended to higher orders in
. For the energy the expansion is found to have an accuracy of better than
for . A comparison is given with an earlier perturbation
expansion based on the Linear Spin Wave approximation and with a similar
expansion based on the Hartree-Fock approximation. The case of an infinite
number of spatial dimensions is discussed.Comment: 12 pages, LaTeX2e, to be published in Phys. Rev.
Heavy Quasi-Particle in the Two-Orbital Hubbard Model
The two-orbital Hubbard model with the Hund coupling is investigated in a
metallic phase close to the Mott insulator. We calculate the one-particle
spectral function and the optical conductivity within dynamical mean field
theory, for which the effective impurity problem is solved by using the
non-crossing approximation. For a metallic system close to quarter filling, a
heavy quasi-particle band is formed by the Hubbard interaction, the effective
mass of which is not so sensitive to the orbital splitting and the Hund
coupling. In contrast, a heavy quasi-particle band near half filling disappears
in the presence of the orbital splitting, but is induced again by the
introduction of the Hund coupling, resulting in a different type of heavy
quasi-particles.Comment: 6page, 7eps figures, to appear in J. Phys. Soc. Jp
Effective three-band model for double perovskites
We start from a six-band model describing the transition-metal t2g orbitals
of half-metallic double perovskite systems, such as Sr2FeMoO6, in which only
one of the transition metal ions (Fe) contains important intratomic repulsion
Ufe. By eliminating the Mo orbitals using a low-energy reduction similar to
that used in the cuprates, we construct a Hamiltonian which contains only
effective t2g Fe orbitals. This allows to treat exactly Ufe, and most of the
Fe-Mo hopping. As an application, we treat the effective Hamiltonian in the
slave-boson mean-field approximation and calculate the position of the
metal-insulator transition and other quantities as a function of pressure or
on-site energy difference.Comment: 8 pages, 3 figure
First-Principles Dynamical Coherent-Potential Approximation Approach to the Ferromagnetism of Fe, Co, and Ni
Magnetic properties of Fe, Co, and Ni at finite temperatures have been
investigated on the basis of the first-principles dynamical CPA (Coherent
Potential Approximation) combined with the LDA (Local Density Approximation) +
Hamiltonian in the Tight-Binding Linear Muffintin Orbital (TB-LMTO)
representation. The Hamiltonian includes the transverse spin fluctuation terms.
Numerical calculations have been performed within the harmonic approximation
with 4th-order dynamical corrections. Calculated single-particle densities of
states in the ferromagnetic state indicate that the dynamical effects reduce
the exchange splitting, suppress the band width of the quasi-particle state,
and causes incoherent excitations corresponding the 6 eV satellites. Results of
the magnetization vs temperature curves, paramagnetic spin susceptibilities,
and the amplitudes of local moments are presented. Calculated Curie
temperatures () are reported to be 1930K for Fe, 2550K for Co, and
620K for Ni; for Fe and Co are overestimated by a factor of 1.8,
while in Ni agrees with the experimental result. Effective Bohr
magneton numbers calculated from the inverse susceptibilities are 3.0 (Fe), 3.0 (Co), and 1.6 (Ni), being in
agreement with the experimental ones. Overestimate of in Fe and Co
is attributed to the neglects of the higher-order dynamical effects as well as
the magnetic short range order.Comment: 10 pages, 13 figure
- …