12,072 research outputs found

    New Power Module Integrating Output Current Measurement Function

    Get PDF
    This paper proposes a new power module concept that integrates output current measurement function to make inverters compact. The current measurement function is realized by tiny printed-circuit-board (PCB) Rogowski coils. The PCB Rogowski coil picks up a switching current flowing through an IGBT chip, and then a combination of a digital circuit based on a field-programmable-gate-array (FPGA) and an integrator circuit reproduces the output current of the inverter from the switching current. A major concern of the new power module is the effect of reverse recovery current of free-wheeling diodes because the reverse recovery current is superimposed on the switching current. This paper proposes a mitigating method of the reverse recovery current.2017 29th International Symposium on Power Semiconductor Devices and IC\u27s (ISPSD), May 28 2017-June 1 2017, Sapporo, Japa

    Solitary electromagnetic waves propagation in the asymmetric oppositely-directed coupler

    Full text link
    We consider the electromagnetic waves propagating in the system of coupled waveguides. One of the system components is a standard waveguide fabricated from nonlinear medium having positive refraction and another component is a waveguide produced from an artificial material having negative refraction. The metamaterial constituting the second waveguide has linear characteristics and a wave propagating in the waveguide of this type propagates in the direction opposite to direction of energy flux. It is found that the coupled nonlinear solitary waves propagating both in the same direction are exist in this oppositely-directed coupler due to linear coupling between nonlinear positive refractive waveguide and linear negative refractive waveguide. The corresponding analytical solution is found and it is used for numerical simulation to illustrate that the results of the solitary wave collisions are sensible to the relative velocity of the colliding solitary waves.Comment: 9 pages,5 figure

    TMC-1C: an accreting starless core

    Get PDF
    We have mapped the starless core TMC-1C in a variety of molecular lines with the IRAM 30m telescope. High density tracers show clear signs of self-absorption and sub-sonic infall asymmetries are present in N2H+ (1-0) and DCO+ (2-1) lines. The inward velocity profile in N2H+ (1-0) is extended over a region of about 7,000 AU in radius around the dust continuum peak, which is the most extended ``infalling'' region observed in a starless core with this tracer. The kinetic temperature (~12 K) measured from C17O and C18O suggests that their emission comes from a shell outside the colder interior traced by the mm continuum dust. The C18O (2-1) excitation temperature drops from 12 K to ~10 K away from the center. This is consistent with a volume density drop of the gas traced by the C18O lines, from ~4x10^4 cm^-3 towards the dust peak to ~6x10^3 cm^-3 at a projected distance from the dust peak of 80" (or 11,000 AU). The column density implied by the gas and dust show similar N2H+ and CO depletion factors (f_D < 6). This can be explained with a simple scenario in which: (i) the TMC-1C core is embedded in a relatively dense environment (H2 ~10^4 cm^-3), where CO is mostly in the gas phase and the N2H+ abundance had time to reach equilibrium values; (ii) the surrounding material (rich in CO and N2H+) is accreting onto the dense core nucleus; (iii) TMC-1C is older than 3x10^5 yr, to account for the observed abundance of N2H+ across the core (~10^-10 w.r.t. H2); and (iv) the core nucleus is either much younger (~10^4 yr) or ``undepleted'' material from the surrounding envelope has fallen towards it in the past 10,000 yr.Comment: 29 pages, including 5 tables and 15 figure

    Patch Plate Materials Compatibility Assessment

    Get PDF
    Lunar dust proved to be a greater problem during the Apollo missions than was originally anticipated. The highly angular, charged dust particles stuck to seals, radiators, and visors; clogged mechanisms; and abraded space suits. As reported by Apollo 12 astronaut Pete Conrad "We must have had more than a hundred hours suited work with the same equipment, and the wear was not as bad on the training suits as it is on these flight suits in just the eight hours we were out.". Dust clinging to surfaces was also transport-ed into habitable spaces leading to lung and eye irritation of the astronauts. The Apollo astronauts were on the Lunar surface less than 24 hours and experienced many dust related problems. With the Artemis program, we are planning longer stays on the surface, with more activities that have the potential to put the astronauts and equipment in contact with greater quantities of Lunar dust. The success of these missions will depend on our understanding of material interactions with Lunar dust and the development of ways to mitigate dust effects in cases where exposure to dust will lead to failure of components, unacceptable loss of power or thermal control, unacceptable loss of visibility, or health issues. Through the Lunar Surface In-novation Initiative (LSII), we are initiating a Patch Plate Materials Compatibility Assessment project. The overall goal of the three year project is to develop passive approaches to mitigate Lunar dust adhesion to surfaces for technologies that are currently at TRL levels 2-3 to bring them to TRL level 5 through ground-based assessment, culminating in a demonstration flight experiment on a Commercial Lunar Payload Services (CLPS) lander in 2022-2023. This paper discusses the detailed technical objectives and approach for this project. References: Gaier, J.R. "The Effects of Lunar Dust on EVA Systems During the Apollo Missions," NASA/TM-2005-213610/REV1, (2005), Apollo 12 Technical Crew Debriefing, December 1, 1969, pp. 10-54

    Temperature rise measurement for power-loss comparison of an aluminum electrolytic capacitor between sinusoidal and square-wave current injections

    Get PDF
    DC-link capacitors are a major factor of degrading reliability of power electric converters because they usually have a shorter lifetime and higher failure rate than those of semiconductor devices or magnetic devices. Characteristics of the capacitors are usually evaluated by a single sinusoidal current waveform. However, actual current flowing out of the converter into the capacitor is a modulated square current waveform. This paper provides experimental comparison of the power loss dissipated in an aluminum electrolytic capacitor between sinusoidal and square-wave current injections. Power loss is estimated by temperature rise of the capacitor. Experimental results confirm that power losses of the square-wave current injection were always lower than those of the sinusoidal current injection by 10–20%. Moreover, the power losses of the square-wave current injection can be estimated by a synthesis of fundamental and harmonic currents based on the Fourier series expansion, which brings a high accuracy less than 1% when more than fifth harmonic current is introduced. This comparison will be useful for estimating power loss and life time of electrolytic capacitors

    Engineering of triply entangled states in a single-neutron system

    Full text link
    We implemented a triply entangled Greenberger-Horne-Zeilinger(GHZ)-like state and coherently manipulated the spin, path, and energy degrees of freedom in a single neutron system. The GHZ-like state was analyzed with an inequality derived by Mermin: we determined the four expectation values and finally obtained M = 2.558 +/- 0.004 > 2, which exhibits a clear violation of the noncontextual assumption and confirms quantum contextuality.Comment: 4 pages, 2figure

    Thermodynamic effects on cryogenic cavitating flow in an orifice

    Full text link
    Temperature depression in a cavitating orifice flow was experimentally investigated with liquid nitrogen in order to clarify the influence of turbulent flow around a bubble on thermodynamic effects on cavitation. The temperature began to decrease at the outlet of the orifice when the cavitation number decreased below 0. Moreover, the temperature depression became larger as the cavitation number became smaller. In addition, the temperature depression also became greater as the flow velocity became lower when the cavitation numbers were equal. Based on theoretical considerations and experimental results, the difference of temperature depression can be considered to be caused by the enhancement of thermal transport around bubbles due to the turbulent flow. In addition, if thermal transport is enhanced as mentioned above, the temperature in the area where the cavitation collapses can become higher than that upstream of the orifice due to the temporary breakdown of the heat balance between the inception and collapse of cavity bubbles.http://deepblue.lib.umich.edu/bitstream/2027.42/84237/1/CAV2009-final36.pd

    Finite-temperature Mott transitions in multi-orbital Hubbard model

    Full text link
    We investigate the Mott transitions in the multi-orbital Hubbard model at half-filling by means of the self-energy functional approach. The phase diagrams are obtained at finite temperatures for the Hubbard model with up to four-fold degenerate bands. We discuss how the first-order Mott transition points Uc1U_{c1} and Uc2U_{c2} as well as the critical temperature TcT_c depend on the orbital degeneracy. It is elucidated that enhanced orbital fluctuations play a key role to control the Mott transitions in the multi-orbital Hubbard model.Comment: 8 pages, 7 figure
    corecore