106 research outputs found

    Model generation theorem proving with interval constraints

    Get PDF
    We investigate how the deduction paradigm of model generation theorem proving can be enhanced with interval-and extraval-based constraints leading to more efficient model generation in for some finite domain problems

    Zusammenfassung der Magisterarbeiten 1999

    Get PDF

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Model Generation Theorem Proving with Finite Interval Constraints

    No full text

    On the Relationship between Non-Horn Magic Sets and Relevancy Testing

    No full text
    . Model-generation based theorem provers such as SATCHMO and MGTP suffer from a combinatorial explosion of the search space caused by clauses irrelevant to the goal (negative clause) to be solved. To avoid this, two typical methods have been proposed. One is relevancy testing implemented in SATCHMORE by Loveland et al., and the other is non-Horn magic sets that are the extension of Horn magic sets and used for MGTP. In this paper, we define the concept of weak relevancy testing, which somewhat relaxes the relevancy testing constraint. Then, we analyze the relationship between non-Horn magic sets and weak relevancy testing in detail, and prove that the total number of interpretations generated by MGTP employing non-Horn magic sets is always the same as that by SATCHMORE using weak relevancy testing. Thus, we find that non-Horn magic sets and weak relevancy testing, although they are completely different approaches, have the same power in pruning redundant branches of a proof tree. 1 Int..

    Model Generation Theorem Proving with Interval Constraints

    No full text
    We investigate how the deduction paradigm of model generation theorem proving can be enhanced with interval- and extraval-based constraints leading to more efficient model generation in for some finite domain problems. 1 Model Generation Model generation (MG) is a sound and complete inference rule for first-order predicate logic for input in conjunctive normal form (CNF). One can view it as a positive literal restriction of clausal semantic tableaux. Manthey & Bry [9] gave a concise implementation of a variant of model generation in Prolog. In logic programming and deductive databases it is common to impose the range-restrictedness condition on first-order clauses: 1 Definition 1 A first-order clause C!D is range-restricted if all variables that occur in D occur also in C. Observe that a range-restricted positive clause must be ground. In the range-restricted case model generation can be defined as follows: 2 Definition 2 Let S = fC 1 ; : : : ; Cm g be a first-order CNF formula..
    corecore