
Model Generation Theorem Proving

with Interval Constraints�

Reiner H�ahnley

Institute for Logic, Complexity and Deduction Systems

Dept. of Comp. Sci., Univ. Karlsruhe, 76128 Karlsruhe, Germany

haehnle@ira.uka.de http://i12www.ira.uka.de/~reiner

Ryuzo Hasegawa

Dept. of Electronics, Kyushu Univ. 36, Fukuoka 812, Japan

hasegawa@ele.kyushu-u.ac.jp

Yasuyuki Shirai

Information Technologies Development Dept.

Mitsubishi Research Institute, Inc.

Ohtemachi 2-3-6, Chiyoda-ku, Tokyo 100, Japan

shirai@mri.co.jp

�This report has been submitted for publication elsewhere and will be copy-
righted if accepted. It is published simultaneously as a Technical Report of the
Department of Electronics, Kyushu University 36, Fukuoka 812, Japan.

yThis co-author's contribution in the results described in the present paper was
mainly done during a stay as visiting researcher at the Institute for New Generation
Computer Technology (ICOT), Tokyo, Japan. The generous support provided by
ICOT is gratefully acknowledged.

Abstract

We investigate how the deduction paradigm of model generation theorem

proving can be enhanced with interval- and extraval-based constraints lead-

ing to more e�cient model generation in for some �nite domain problems.

1 Model Generation

Model generation (MG) is a sound and complete inference rule for �rst-order

predicate logic for input in conjunctive normal form (CNF). One can view

it as a positive literal restriction of clausal semantic tableaux. Manthey &

Bry [9] gave a concise implementation of a variant of model generation in

Prolog.

In logic programming and deductive databases it is common to impose

the range-restrictedness condition on �rst-order clauses:1

De�nition 1 A �rst-order clause C!D is range-restricted if all vari-

ables that occur in D occur also in C.

Observe that a range-restricted positive clause must be ground. In the

range-restricted case model generation can be de�ned as follows:2

De�nition 2 Let S = fC1; : : : ; Cmg be a �rst-order CNF formula. A set

M of model candidates3 for S is inductively de�ned as a minimal family

of sets of ground atoms that obeys the following conditions:

Initialization fg 2 M.

Model extension If M 2 M is not rejected, (C!D) 2 S, (D =

fd1; : : : ; dkg, k�1), � is a substitution, C� � M , and D�\M = ;,

then fM[fd1g; : : : ;M[fdkgg � M (C = ; is allowed). Call M ex-

tendable. If D�\M 6= ; then D is said to be subsumed by M .

Whenever C� � M holds we say that D� is derived from M and S

with conjunctive matching.

Model rejection If C!? 2 S4, � a substitution, and C� �M 2 M, then

mark M as rejected.

A set of models for S are those members of a set of model candidates for

S that are neither extendable nor rejected.

1We employ rule notation p1; : : : ; pn ! q1; : : : ; qm for �rst-order clauses of the form

f:p1; : : : ;:pn; q1; : : : ; qmg.
2The following de�nition is a slightly more precise variant of the de�nition in [2].
3In connection with the implementation of model generation also the expression term

memory is sometimes used for a model candidate.
4The symbol ? denotes falsity that is D = ;.

7

Soundness and completeness of MG may now be formulated as follows: a

range-restricted �rst-order CNF formula S is satis�able i� the set of models

for S is non-empty.

Restricting the input for model generation to range-restricted clauses

has two important advantages that are being reected in De�nition 2 above:

�rst, it is easy to formulate a backtracking-free MG proof search procedure,

in other words an AND search tree is su�cient; second, matching of clauses

is su�cient as opposed to uni�cation. Therefore, an e�cient implementation

of MG called MGTP (Model Generation Theorem Prover) [2, 5] in KL1 is

possible. KL1 is a committed choice concurrent logic programming language

[11] developed at ICOT and has just the required features.

One of the applications of MGTP is the search for models in �nite do-

mains, for instance in �nite quasigroups [3]. Experiments in such domains

showed that merely admitting positive ground atoms in the model candi-

dates results in quite large models which in turn lead to a search space of

infeasible size already for relatively small examples. It is, therefore, desirable

to allow literals in the model candidates which, while still being ground, rep-

resent more than one domain element; in other words, one should work with

atomic ground constraints. This idea is implemented in CMGTP (Constraint

MGTP) [6] for constraints that represent negative information as described

in the following section.

2 Model Generation with Negative Constraints in

CMGTP

The constraints that are elements of model candidates in CMGTP take on

the following form:

� p(X; Y; Z) meaning that the value of X � Y is equal to Z, where � is

a binary operation on a �nite domain;

� :p(X; Y; Z) meaning that the value of X � Y is unequal to Z.

Observe that formally a constraint with negative sign in CMGTP is

still handled as a positive atom, that is, :p(X; Y; Z) is just a name for

the constraint expressing X�Y 6= Z (to make this clearer one could use a

predicate name like np instead of :p). In particular, conjunctive matching

needs not be changed.

8

In order to make use of such constraints, several extensions must be

made to the rules of standard MGTP:

1. A model candidate in which both p(a; b; c) and :p(a; b; c) are present

must not be generated. When MGTP checks for rejection of a model-

extending candidate it does this on both sides of the arrow anyway, so

here no real need for a change arises.

2. The main point, however, is: newly generated disjuncts D in the

model-extending candidate set as well as in the current model candi-

date may contain negative constraints. Even when the current model

candidate is neither rejected nor the newly generated disjunct is sub-

sumed, it might still be possible to simplify either. For instance, if

:p occurs in the current model candidate it can be used to simplify a

disjunction (a model extending candidate) D = D1_p_D2 to D1_D2.

As in the newly generated disjunctions themselves negative constraints

may occur, the case where p and :p are switched around must be

checked as well. When D happens to be of length 1 then D itself may

additionally be used to simplify other model-extending candidates.

The model generation process of CMGTP is displayed schematically in

Figure 1. For each model candidate there exists one process. Besides the

set of input clauses S there are four kinds of objects: (i) the current model

candidate M : a set of atomic ground constraints; (ii) from M and S newly

generated disjunctions some of which may be unit clauses (the non-units are

immediately checked for simpli�cation by M , see item (2) above, the units

for possible refutation ofM); (iii) the simpli�ed newly generated disjunctions

are added to the pool D of model extending candidates. When one of the

D's is selected for model extension, the current process forks into jDj many

subprocesses in each of which (iv) one of the � 2 D gets the status of

extending literal. According to item (2) above, � can be used to simplify

the D's or to refute M before being added to M .

3 IV-MGTP: Model Generation with Interval and

Extraval Constraints

As we are working with �nite domains let us assume the domain N is of the

form f1; 2; : : : ; ng. The task of the constraints in the model candidates is to

represent the possible values a function still can take on at a given argument

9

at a certain point of the model generation process. For example, :p(2; 4; 3)

says that the value of 2 � 4 is an element from the set Nnf3g. Arbitrary sets

can be represented by conjunctively combining such constraints, but it is a

natural idea to use a more e�cient representation of �nite sets than positive

and negative constraints. Such an e�cient representation would be lists of

intervals. Essentially the same execution model as for negative constraints

can be used.

M : model candidate

p(a) :p(b)
q(a) :r(b)

...

:p(x)!r(x);:s(x)
�: extending

literal

NewUnit
NewDisj

Unit
Disj

D: model
extending
candidate

matching

co
n
ju
n
ct
iv
e

new disjunctions

gen
eration
of

Ref(NewUnit,M+�)
Simpl(M+�,NewDisj)

add

selection

m
o
d
el
ex
te
n
si
on

add

Simpl(�,D)

Ref(�,M)

Figure 1: Model generation process of CMGTP.

In the following we give the details of a version of MGTP called IV-

MGTP in which model candidates essentially are interval-based constraints.

As before in CMGTP the following questions must be adressed:

1. Which constraints appear in input clauses?

2. How are constraints represented internally?

3. How and when is model rejection performed?

4. How is conjunctive matching done?

5. Which disjunctions are kept?

6. How and when is simpli�cation performed?

10

3.1 Constraint Language of Input

In the following we assume that for each right-functional m+ 1-place pred-

icate p/(m+1) over a �nite domain N (where p(X1; : : : ; Xm; Z) typically

expresses that the result of applying an m-ary operation to X1; : : : ; Xm is

Z) there is an m-place function with the same name. Let � give the arity

of each such function.

De�nition 3 A signed clause is a clause of the form

S1 p1(t11; : : : ; t1�(p1)); : : : ; Sk pk(tk1; : : : ; tk�(pk))!

Sk+1 pk+1(t(k+1)1; : : : ; t(k+1)�(pk+1)); : : : ;Sm pm(tm1; : : : ; tm�(pm))

where Si � N . It is satis�able i� there are c1; : : : ; cm 2 N such that

p1(t11; : : : ; t1�(p1); c1); : : : ; pk(tk1; : : : ; tk�(pk); ck)!

pk+1(t(k+1)1; : : : ; t(k+1)�(pk+1); ck+1); : : : ; pm(tm1; : : : ; tm�(pm); cm)

is satis�able in the usual sense. The constituents of signed clauses are

called signed literals.

Thus a signed literal S p(X1; : : : ; Xn) simply abbreviates the disjunctionW
i2S p(X1; : : : ; Xn; i).

Example 4 Assume p(X; Y; Z) says that the result of an operator � over

N on X and Y is Z. Injectivity of � can be expressed as follows:

{I} p(X,Y), dom(X1), {X1\=X, S1=N\{I}} -> S1 p(X1,Y).

Here, dom is a unary predicate saying that its argument is in the domain

of p; the expressions in curly brackets are primitives over �nite sets which,

for the moment, can assumed to be part of KL1.

There are many ways of expressing the same fact. For instance, using

only intervals and extravals as signs one may equivalently write:

[I,I] p(X,Y), dom(X1) ->]I,I[p(X1,Y).

or

[I,I] p(X,Y), dom(X1) ->]1,I[p(X1,Y);]I,n[p(X1,Y).

Although the declarative meaning of all formulations in the above ex-

ample is identical the operational semantics is quite di�erent: in the last

formulation the search for a model is split into two cases while in the �rst

11

two formulations it is not. This gives the programmer means to control the

structure of the search space.

We chose to admit intervals and extravals as admissible constraints (or

signs) in the input. Recall that any �nite set can be represented as an

intersection of �nitely many extravals, see also the next section. The con-

straints themselves may contain variables which must observe the range-

restrictedness condition.

3.2 Representation of Constraints

In principle one could simply take signed ground literals as members of

model candidates. This is not very e�cient, however, because KL1 has no

built-in primitives for manipulation of �nite sets. We chose to represent the

constraint S of S p as a �nite, minimal, ordered list of extravals that is

S = f]i1; j1[; : : : ;
�
imp ; jmp

�
g ;

where 1 � i1, ik � jk, jk < ik+1+1, jmp � jN j for all 1 � k � mp. Thus

a model candidate M is a partial function from the set of ground atoms to

ordered lists of extravals. If M(p) is unde�ned p is assumed to have the

constraint N = [1; n].

We chose to use lists of extravals rather than lists of intervals, because

during the model generation process the constraint S associated with a

ground atom p is conjunctively combined with constraints S0, S00 etc, when

M is updated with new information. Thus extravals are e�cient when the

term memory is updated frequently, because the intersection of two extravals

again is an extraval.5

M(p) corresponds to the set of domain elements which p can assume in

the current model candidate. It is given by

M(p) =

mp\
k=1

]ik; jk[:

Depending on which is the more convenient we sometimes prefer to con-

ceive M(p) as a list of extravals and sometimes as a set of domain elements.

In the actual implementation, however, M(p) is always a list of extravals.

5Below we will see, however, that for certain operations such as conjunctive matching or

simpli�cation interval representations are more natural. As extraval-interval conversion

induces a certain overhead, it is speci�c to the problem domain which kind of repre-
sentation should be actually chosen depending on whether model candidate updates or

conjunctive matching and simpli�cation dominates. See Section 4 for an example, where

this consideration becomes relevant.

12

From a minimal extraval representation ; 6= M(p) =
Tmp
k=1]ik; jk[it is

trivial to compute an interval representation denoted with M 0(p):

M 0(p) = [1; i1�1] [

 mp[
k=2

[jk�1+1; ik�1]

!
[[jmp+1; m] (1)

If either i1 = 1 or jmp = m then the �rst, respectively, the last disjunct

is dropped.

3.3 Model Rejection

Given a model candidate M and a signed literal (that is a unit clause) S p,

where S is either an interval or an extraval, we say that M rejects S p i�

M(p) is de�ned and M(p)\S = ;.

In view of the equality6 [i; j] =]1; i�1[\]j+1; n[(for 1 < i, j < n; if i = 1

or j = n drop the extraval involving i, respectively, j) it su�ces to conjoin

extraval lists with extraval lists in order to check for model rejection.

3.4 Conjunctive Matching

Assume we have a rule of the form S1 p1; : : : ; Sm pm ! C in our database.

Then one derives C� with conjunctive matching provided that the cur-

rent model candidate M de�nes constraints for ground atoms fp01; : : : ; p
0
mg

such that

1. there is a substitution � with fp01; : : : ; p
0
mg = fp1; : : : ; pmg� and

2. M(p0i) � Si for all 1 � i � m

and the Si are ground. If one admits variables in the constraints for

reasons of e�ciency and exibility, then it is slightly more complicated to

compute the disjunctions, because uninstantiated constraints represent dis-

junctive information: in general, one derives C� with conjunctive matching

provided that the current model candidate M de�nes constraints for ground

atoms fp01; : : : ; p
0
mg such that

1. there is a substitution � with fp01; : : : ; p
0
mg = fp1; : : : ; pmg� and

2. there is a substitution � with M(p0i) � Si� for all 1 � i � m

6This is essentially the dual of (1).

13

For each literal [I 0; J 0] p in the antecedent the variables I 0, J 0 must be

instantiated such that all intervals inM 0(p0) =
Sm0

p

k=1 [i
0
k; j

0
k] are covered. The

obvious choice is to set I 0 = i01 and J 0 = j0m0
p
.

Extraval constraints Sp =]I; J [p in the antecedent are more complicated:

if M(p0) =
Tm0

p

k=1]ik; jk[then for each 1 � k � m0
p letting I = ik and J = jk

is su�cient for M(p0i) � S� to hold.

This means that when extraval constraints S1 p1; : : : ; Sr pr appear in the

antecedent of a clause C up to �r
k=1mpk disjuncts can be generated (where

mp �
n
2
for all p), but typically most of them are subsumed or simpli�ed,

see the following sections. Also (for example, in the quasi-group problems)

antecedents tend to be short, typically r � 2, and often mp � n.

3.5 Subsumption

Only disjunctions that are not subsumed by the current model candidate are

kept in the lists NewUnit and NewDisj. For negative constraints De�nition

2 needs not to be changed. For intervals and extravals, however, it must be

adapted as follows:

Let D be a disjunction of signed literals. De�ne

d(D; p) =
[

S�N and S p
occurs in D

S

Then a model candidate M subsumes D i� M de�nes M(p) such that

M(p) � d(D; p).

This de�nition takes into account that the same atom can occur multiply

with di�erent signs within the same disjunction.

3.6 Simpli�cation

One possibility of simpli�cation is a direct generalization of the case of neg-

ative constraints described in Section 2:

Given a signed literal S p and a disjunction D = D1_S
0 p_D2, then

D can be simpli�ed to D0 = D1_D2 provided that S\S0 = ;. S p can

come from two sources (cf. Figure 1): either the current model candidate

de�nes M(p) = S or S p is an extending literal � from the selected model

extending candidate. Thus a similar functionality as for model rejection is

required for this possibility and its integration into the model generation

process is exactly as in Section 2.

14

There is, however, a second possibility for simpli�cation which can only

occur in the more general case: assume, for example, M(p) = f1; 2; 4g in

the current model candidate M and � = S p = f2; 3g p. Then � is neither

subsumed by M nor does it reject M . In this case M(p) must be updated

to M(p)\S = f2g. Similarly, newly derived disjunctions D = D1_S
0 p_D2

can be simpli�ed to D0 = D1_(S\S
0) p_D2 provided that neither S\S0 = ;

nor D is subsumed byM . Finally, the current model candidate M itself can

be used to simplify newly derived disjunctions in exactly the same way.

We call this second possibility of simpli�cation reduction after a similar

rule used in annotated logic programming [7]. The result of the reduction

operation, namely M(p)\S, respectively, (S\S0) p is called a residue.7

The overall control schema must be augmented with additional possi-

bilities for reduction denoted with Red/2. This is depicted in Figure 2.

The simpli�cation (or updating) of model candidates by extending literals

is achieved by the call Red(�,M) while the simpli�cation of newly derived

disjunctions by extending literals or the current model candidate is simul-

taneously achieved by the call Red(M+�,NewDisj).

4 Results from Experiments

We have developed an IV-MGTP prototype system by modifying CMGTP,

and made experiments on �nite domain constraint satisfaction problems.

4.1 IV-MGTP Prototype System

The model generation cycle of IV-MGTP is basically the same as that of

CMGTP. For IV-MGTP, however, conjunctive matching, simpli�cation, re-

duction, and subsumption processes are extended in order to manipulate

signed literals. The term memory for quick retrieval of literals is also ex-

tended to maintain the signed literals in M using extraval lists.

In CMGTP, the criterion for selecting � fromD is de�ned so as to prefer

atoms to disjunctions. If no atom is in D, CMGTP selects a disjunction of

the least length. In contrast to this IV-MGTP selects a literal such that

7Observe that in contrast to the subsumption test, where all occurrences d(D;p) of an
atom in D are considered simultaneously, residues are computed separately for each literal

in D. This reects the rationale that the user of IV-MGTP should have control over the

branching degree of disjunctions. A di�erent approach would merge the occurrences of p

to d(D;p), simplify d(D;p) and then split it up again according to a �xed and complete

splitting strategy.

15

M : model candidate

f]1;2[;]4;6[gp(a)

f]2;n[g q(b)
...

[I; n] p(x)!]1; I[r(x)
�: extending

literal

NewUnit

NewDisj

Unit

Disj

D: model

extending

candidate

matching

co
n
ju
n
ct
iv
e

new disjunctions

g
en
era
tio
n
o
f

Ref(NewUnit,M+�)

Simpl(M+�,NewDisj)

Red(M+�,NewDisj)

add

selection

m
o
d
el
ex
te
n
si
o
n

update
Red(�,M)

Simpl(�,D)

Ref(�,M)

Figure 2: Model generation process of IV-MGTP.

the sum of its interval lengths is the least. This criterion can be changed

according to the problem to be solved.

Both systems are written in KL1 and run on a KLIC system (portable

KL1 running on a UNIX machine). The experiments described in this paper

were made on a SPARCstation20.

4.2 Problems and Results

4.2.1 Quasigroup Existence Problems

Quasigroup existence problems (QG problems) [1, 10] in �nite algebra are

typical �nite-domain constraint satisfaction problems, which attract a world-

wide attention for being combinatorially explosive yet good benchmarks.

In 1992, MGTP succeeded in solving several open QG problems on a

parallel inference machine PIM/m consisting of 256 processors [3]. Later,

other theorem provers or constraint solvers such as DDPP, FINDER, Eclipse,

CMGTP solved other new open problems more e�ciently than the original

MGTP.

In order to solve QG problems it is essential to prune as many redundant

16

� 1 2 3 4 5

1 1 3 2 5 4

2 5 2 4 3 1

3 4 5 3 1 2

4 2 1 5 4 3

5 3 4 1 2 5

Figure 3: Latin square (order 5).

branches as possible using the constraint propagation mechanisms. For this,

CMGTP provides negative constraint propagation by introducing negative

atoms and incorporating simpli�cation processes.

QG problems can be de�ned as �nding models or showing that no model

exists for Latin squares which satisfy some additional constraints. The mul-

tiplication table of a binary operation � de�ned on a quasigroup QG forms

a Latin square. Figure 3 shows an example of a Latin square of order 5.

QG problems are classi�ed according to the additional constraints. One

usually uses codes for classes of QG problems: QG1; QG2; : : : ; QG7, each

of which is de�ned by adding some constraints to the bare Latin square

constraints.

For instance, the additional constraint for QG5 is as follows:

QG5 : 8XY 2 Q: ((Y X)Y)Y = X

Since the Latin square shown in Figure 3 satis�es the QG5 constraint,

QG5 has at least one idempotent solution for an order of 5.

The QG5 constraint, ((Y X)Y)Y = X , can be expressed with rules as

follows:

Y �X = A; A � Y = B ! B � Y = X:

Y �X = A; B � Y 6= X ! A � Y 6= B:

A � Y = B; B � Y 6= X ! Y �X 6= A:

The last two rules are contrapositives of the �rst rule. We can write the

above rules in IV-MGTP syntax as follows:

[A,A] p(Y,X), [B,B] p(A,Y) -> [X,X] p(B,Y).

[A,A] p(Y,X),]X,X[p(B,Y) ->]B,B[p(A,Y).

[B,B] p(A,Y),]X,X[p(B,Y) ->]A,A[p(Y,X).

17

Table 1: The experimental results for QG problems

IV-MGTP CMGTP

order models runtime(sec) branches runtime(sec) branches

7 3 25.9 2 3.9 2

8 1 35.8 8 5.3 9

9 0 66.1 15 9.9 16

10 0 225.7 52 33.4 54

11 5 2102.1 167 192.6 173

12 0 5562.3 320 455.5 324

where p(X,Y) denotes X � Y .

Table 1 compares the experimental results (runtime and the number of

failed branches) for the QG5 problem on IV-MGTP and CMGTP systems.

4.2.2 Cryptarithmetics

We experimented with the well-known cryptarithmetic problem SEND +

MORE = MONEY . This problem is to �nd models for the variables

fD;E;M;N;O;R;S; Y g which satisfy the following equation:

S E N D

+ M O R E

M O N E Y

To solve this problem, for example, we need the following rule:

D + E = 10� r+ Y

where r ranges over f0; 1g, while D;E; Y range over f0; 1; : : : ; 9g. Con-

straint propagation from D;E; r to Y can be represented as an IV-MGTP

rule:

[D1,D2] v(D), [E1,E2] v(E), [r1,r2] v(r) ->

[D1+E1-r2,D2+E2-r1] v(Y).

As can be seen here, the domain of Y can be calculated with the min-

imum and maximum values of the variables D,E,r. IV-MGTP can handle

such domain calculation de�ned by the above rule using intervals/extravals

18

Table 2: The experimental results for Cryptarithmetics

IV-MGTP CMGTP

models runtime(sec) branches runtime(sec) branches

1 3.69 13 62.05 1735

and extended conjunctive matching. For CMGTP, however, since the system

lacks the notion of a variable domain, one has to represent possible values

which a variable may take with di�erent literals. Thus, in CMGTP con-

straint propagation cannot be implemented with domain calculation. Table

2 compares IV-MGTP and CMGTP for cryptarithmetic.

4.3 Discussion

For QG problems, IV-MGTP has almost the same pruning (constraint prop-

agation) ability as CMGTP. Positive and negative atoms in CMGTP are

represented in IV-MGTP as intervals and extravals, respectively. This is

because, unlike as for cryptarithmetic, for QG problems no additional con-

straints are propagated by domain calculation using an interval or an ex-

traval . The slight di�erence in the number of failed branches is caused by

the di�erent case splitting strategy used.

For cryptarithmetics, however, the comparison of the number of failed

branches generated by CMGTP and IV-MGTP exhibits that the pruning ef-

fect for IV-MGTP, which supports the domain calculation, is considerable.

As CMGTP (or MGTP) cannot propagate constraints by domain calcula-

tion, they generate a large number of redundant branches.

Regarding performance, as IV-MGTP as yet is a prototype, there is

ample room for improvements. The main reason why IV-MGTP is less

time e�cient for QG problems is that in the current implementation, the

constraint representation with intervals and/or extravals is only permitted

on one argument of a predicate, denoting a value of a function. Thus, we

have to use extra predicate symbols to represent constraint propagation done

through the inverse functions.

For example, in CMGTP p(a; b; c) means a � b = c, but also b � c = a and

c � a = b, where � and � are the inverse operations of �. This is represented

in IV-MGTP using three di�erent predicates f; g; h, such as in [c; c] f(a; b),

[a; a] g(b; c), [b; b] h(c; a), where g, h denote the inverse functions of f . This

19

renders the size of term memory needed for QG problems in IV-MGTPmuch

bigger than that in CMGTP, thus lengthening the model generation cycle.

Another determining factor of performance concerns manipulation of

intervals and extravals. The currently implemented version of IV-MGTP

retains extraval lists in the term memory so that interval-extraval conversion

is needed frequently in conjunctive matching, subsumption testing, etc. For

cryptarithmetics, however, no extraval occurs in the problem description,

hence such conversions should be needless if the term memory maintains

literals in interval form.

From the viewpoint of parallelization, IV-MGTP can potentially sup-

press redundant case-splitting, because it can maintain the set of candidates

for a variable using a single signed literal, while in MGTP these candidates

are represented by a disjunction which causes case-splitting when it is se-

lected as �. Whenever decreasing the number of case-splits for a variable

is essential for solving a problem, the signed literal-representation would

prevent the disjunction from being blindly case-split.

5 Related Work

It is possible to interpret functions over �nite domains as many-valued pred-

icates. From this point of view there are considerable similarities between

IV-MGTP and annotated logic programs [7], signed formula logic programs

[8] as well as signed CNF formulas [4]. Then the main di�erences between

IV-MGTP and the mentioned formalisms are: (i) IV-MGTP input is range-

restricted; (ii) we consider intervals and extravals whereas the others either

consider only upsets and downsets or totally arbitrary signs; (iii) we admit

variables in the signs, this is also investigated in [7], but under quite di�erent

premisses; (iv) we use model generation, a bottom-up inference rule, whereas

the others either use variants of SLD-resolution or unrestricted resolution.

The automatic simpli�cation and reduction of model candidates and dis-

junctions we employ is much more sophisticated than similar stratagems in

the resolution procedures mentioned in the previous paragraph. On the

other hand, with the exception of the straightforward instantiation of con-

straint variables described in Section 3.4 all computations over constraints

in IV-MGTP are performed on the ground level. In other words, we do not

constraint solving, but merely constraint simpli�cation. In languages such as

Eclipse or CLP(FD) constraints may contain variables, and the used deduc-

tion paradigm is not model generation, but SLD-resolution plus constraint

20

solving. The bulk of work is often done by the constraint solver and not

by the logical inference machine. In our case, all can be done by conjunc-

tive matching and relatively simple calls to KL1's built-in arithmetic. The

advantage is an e�cient, highly parallel implementation which admittedly

aims at less generality than CLP.

6 Conclusion and Further Work

We have proposed IV-MGTP, in which interval and extraval constraints are

e�ectively handled within the CMGTP framework. IV-MGTP manipulates

domains for variables as the attributes of predicates. Extended conjunc-

tive matching for signed literals makes it possible to enhance the constraint

processing ability signi�cantly.

The main advantage of this approach is that various kinds of constraint

propagation mechanisms can be implemented just by giving di�erent con-

straint propagation rules in forward reasoning style.

It depends on the problem domain how bene�cial the e�ect of interval/-

extraval constraints on performance is. For problems, where the ordering

of the domain elements has no signi�cance, such as the elements of a QG

problem (whose numeric elements are considered strictly as symbolic values,

not arithmetic values), CMGTP and IV-MGTP have essentially the same

pruning e�ect. However, where reasoning about the arithmetic relationship

between the elements is important, such as in cryptarithmetics, IV-MGTP

outperforms CMGTP.

Currently, the most severe restriction in IV-MGTP is that interval/extra-

val constraints are limited to one argument of a predicate. If we want to

describe more complicated constraints, we may need an extended framework

in which one can admit interval/extraval constraints for the other arguments

as well.

In order to improve time e�ciency, we have to investigate the term mem-

ory which maintains signed literals using lists of extravals. As we saw in

section 4, the most e�cient internal expression depends on the description

of the problem to be solved.

References

[1] F. Bennett. Quasigroup identities and Mendelsohn designs. Canadian Journal

of Mathematics, 41:341{368, 1989.

21

[2] H. Fujita and R. Hasegawa. A model generation theorem prover in KL1 using
a rami�ed-stack algorithm. In K. Furukawa, editor, Proceedings 8th Interna-

tional Conference on Logic Programming, Paris/France, pages 535{548. MIT
Press, 1991.

[3] M. Fujita, J. Slaney, and F. Bennett. Automatic generation of some results in
�nite algebra. In Proc. Int. Joint Conf. on Art. Intelligence, 1993.

[4] R. H�ahnle. Exploiting data dependencies in many-valued logics. Journal of

Applied Non-Classical Logics, to appear, 1995.

[5] R. Hasegawa, M. Koshimura, and H. Fujita. MGTP: A parallel theorem prover
based on lazy model generation. In D. Kapur, editor, Proc. 11th International

Conference on Automated Deduction, pages 776{780. Springer LNAI 607, 1992.

[6] R. Hasegawa and Y. Shirai. Constraint propagation of CP and CMGTP:
Experiments on quasigroup problems. In 12th Conference on Automated De-

duction CADE, Nancy/France, Proc. of Workshop on Automated Reasoning

in Algebra, 1994.

[7] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic
programming and its applications. Jornal of Logic Programming, 12:335{367,
1992.

[8] J. J. Lu. Logic programming with signs and annotations. Technical report,
Bucknell University, Lewisburg/PA, USA, 1995.

[9] R. Manthey and F. Bry. SATCHMO: A theorem prover implemented in Pro-
log. In Proceedings 9th Conference on Automated Deduction, pages 415{434.
Springer LNCS, New York, 1988.

[10] J. Slaney, M. Fujita, and M. Stickel. Automated reasoning and exhaustive
search: Quasigroup existence problems. Computers and Mathematics with

Applications, 1993.

[11] K. Ueda and T. Chikayama. Design of the kernel language for the parallel
inference machine. The Computer Journal, 33(6):494{500, Dec. 1990.

22

