248 research outputs found

    Classification of scanning electron microscope images of pharmaceutical excipients using deep convolutional neural networks with transfer learning

    Get PDF
    Convolutional Neural Networks (CNNs) are image analysis techniques that have been applied to image classification in various fields. In this study, we applied a CNN to classify scanning electron microscopy (SEM) images of pharmaceutical raw material powders to determine if a CNN can evaluate particle morphology. We tested 10 pharmaceutical excipients with widely different particle morphologies. SEM images for each excipient were acquired and divided into training, validation, and test sets. Classification models were constructed by applying transfer learning to pretrained CNN models such as VGG16 and ResNet50. The results of a 5-fold cross-validation showed that the classification accuracy of the CNN model was sufficiently high using either pretrained model and that the type of excipient could be classified with high accuracy. The results suggest that the CNN model can detect differences in particle morphology, such as particle size, shape, and surface condition. By applying Grad-CAM to the constructed CNN model, we succeeded in finding particularly important regions in the particle image of the excipients. CNNs have been found to have the potential to be applied to the identification and characterization of raw material powders for pharmaceutical development

    Fibronectin Adsorption on Osteoconductive Hydroxyapatite and Non-osteoconductive α-alumina

    Get PDF
    The osteoconductivity mechanism of hydroxyapatite (HAp) has not been elucidated. It is hypothesized that specific proteins adsorb on HAp, promoting its osteoconductivity. To verify this hypothesis, we compared the adsorption behavior of fibronectin (Fn) on HAp powder and on α-alumina (α-Al2O3) powder, a material with no osteoconductivity. More Fn adsorbed on α-Al2O3 than on HAp, irrespective of the Fn concentration, and there was no significant difference in the secondary structure of Fn adsorbed on HAp and α-Al2O3. Further, it is possible that Fn did not adsorb on HAp and α-Al2O3 through the Arg-Gry-Asp motif of Fn. The amount of Fn adsorbed on HAp oriented to the a(b)-axis with very little decrease in carbonate and the adsorbed Fn had a smaller α-helix structure content. The results suggest that the secondary and/or higher-order structure rather than the amount of adsorbed Fn might affect the osteoconductivity of HAp, which might be electrostatically controlled by the crystal face orientation and/or carbonate content of HAp, although this should be confirmed by a cell culture test in the future

    Development of 3D CAD/FEM Analysis System for Natural Teeth and Jaw Bone Constructed from X-Ray CT Images

    Get PDF
    A three-dimensional finite element model of the lower first premolar, with the three layers of enamel, dentin, and pulp, and the mandible, with the two layers of cortical and cancellous bones, was directly constructed from noninvasively acquired CT images. This model was used to develop a system to analyze the stresses on the teeth and supporting bone structure during occlusion based on the finite element method and to examine the possibility of mechanical simulation

    Distinct effects of anterior pyriform cortex and the lateral hypothalamus lesions on protein intake in rats

    Get PDF
    Several specific locations in brain, including pyriform cortex and hypothalamus, are associated with regulation of food intake. Although lesions of these locations significantly alter food intake, their involvement in the selection of macronutrients is not well characterized. In this study, we examined distinct effects of anterior pyriform cortex (APC) and lateral hypothalamus (LH) lesions on protein intake in rats. The APC or LH of male adult rats were lesioned by treatment with kainic acid, and the rats were then given free access to two kinds of casein diets containing high (60%) and low (5%) protein. Total energy content of these diets was kept constant by changing the carbohydrate content. Following the APC lesions, body weight and food intake decreased, but returned to control levels on day 13 and day 4, respectively. APC lesions did not change the ratio of protein intake. In contrast, LH lesions disturbed body weight gain and the selection of a high protein diet for at least two weeks, although food intake returned to control levels by day 2. Our results suggest that LH, but not APC, may play an important role in the selection of protein intake in rats

    Ultrasensitive detection of SARS-CoV-2 nucleocapsid protein using large gold nanoparticle-enhanced surface plasmon resonance

    Get PDF
    The COVID-19 pandemic has created urgent demand for rapid detection of the SARS-CoV-2 coronavirus. Herein, we report highly sensitive detection of SARS-CoV-2 nucleocapsid protein (N protein) using nanoparticle-enhanced surface plasmon resonance (SPR) techniques. A crucial plasmonic role in significantly enhancing the limit of detection (LOD) is revealed for exceptionally large gold nanoparticles (AuNPs) with diameters of hundreds of nm. SPR enhanced by these large nanoparticles lowered the LOD of SARS-CoV-2 N protein to 85 fM, resulting in the highest SPR detection sensitivity ever obtained for SARS-CoV-2 N protein

    Imaging Cool Giant Planets in Reflected Light: Science Investigations and Synergy with Habitable Planets

    Get PDF
    Planned astronomical observatories of the 2020s will be capable of obtaining reflected light photometry and spectroscopy of cool extrasolar giant planets. Here we explain that such data are valuable both for understanding the origin and evolution of giant planets as a whole and for preparing for the interpretation of similar datasets from potentially habitable extrasolar terrestrial planets in the decades to follow.Comment: Science white paper submitted to the Astro 2020 Decadal Survey on Astronomy and Astrophysics. Replace version to fix typo in co-signer name and add figure credit

    Rapid changes in plaque composition and morphology after intensive lipid lowering therapy: study with serial coronary CT angiography.

    Get PDF
    Although intensive lipid lowering by statins can enhance plaque stability, few data exist regarding how early statins change plaque composition and morphology in clinical setting. Therefore, to examine early changes in plaque composition and morphology by intensive lipid lowering with statins, we evaluate coronary plaques from acute coronary syndrome (ACS) before and 3 weeks after lipid lowering by coronary CT angiography. We enrolled 110 patients with suspected ACS and underwent coronary CT. We defined plaque as unstable when CT number of plaque1.10. Rosuvastatin (5 mg/day) or atorvastatin (20 mg/day) were introduced to reduce low density lipoprotein cholesterol (LDL-C). Then, CT was again performed by the same condition 3 weeks after lipid lowering therapy. Total 10 patients (8 men, mean age 72.0 years), in whom informed consent regarding serial CT examination was obtained, were analyzed. Among them, 4 patients who denied to have intensive lipid lowering were served as controls. In remaining 6 patients, LDL-C reduced from 129.5±26.9 mg/dl to 68.5±11.1 mg/dl after statin treatment. Under these conditions, CT number of the targeted plaque significantly increased from 16.0±15.9 to 50.8±35.0 HU (p<0.05) and remodeling index decreased from 1.22±0.11 to 1.11±0.06 (p<0.05), although these values substantially unchanged in controls. These results demonstrate that MDCT-determined plaque composition as well as volume could be changed within 3 weeks after intensive lipid lowering. This may explain acute effects of statins in treatment of acute coronary syndrome
    corecore