8 research outputs found

    Phytochemical characterization of ultrasound-processed sorghum sprouts for the use in functional foods

    Get PDF
    In the recent years, application of ultrasound has been taken into considera- tion to enhance the nutritive value of processed food products, either by retaining or modulating their phytochemical components. Profile of phyto- chemicals in sorghum seeds was amended by optimizing ultrasound appli- cation for their use as sprouts. In this study, overall impact on various phytochemical constituents (alkaloids, phytates, saponins, and sterols), radi- cal scavenging activity (2,2-diphenyl-1-picrylhydrazyl assay, ferric reducing antioxidant power assay, and oxygen radical absorbance capacity assay assay), phenolic profile (total phenolics content, total flavonoids content, ferulic acid, gallic acid, catechin, quercetin, and tannin) along with in vitro protein digestibility (IVPD %) influenced through germination was evaluated in ultrasonically processed sorghum sprouts. Among different treatment levels, sonication at 40% amplitude for 5 min showed the significant out- comes. After germination, the ultrasound-treated sorghum sprouts showed superior profile of phytochemicals that can serve as valuable raw material for producing high-protein functional/weaning foods with low cost

    Functional and Oxidative Quality Characterization of Spray-Dried Omega-3-Enriched Milk Powder

    No full text
    In the present study, fish oil (FO) and wall material were supplemented to milk to produce spray-dried powder (SDP). Furthermore, the mandate of the study was to enlighten the effect of spray-drying (SD) operating conditions on functional and oxidative quality of produced SDP samples. Purposefully, the cow milk was supplemented with 3% FO as omega-enriched source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for development of milk and FO blends (MFOBs). The lecithin was used as an emulsifier and maltodextrin was supplemented as the wall material (WM) in the MFOBs. Initially, the FO, milk fat (MF), and MFOB samples were characterized for EPA, DHA, and peroxide value (PV) before the SD. The SD of MFOB samples was carried out to produce SDP samples by using a mini spray dryer. Central composite design (CCD) with face-centered rotation was used to optimize SD independent conditions such as inlet air temperature (IAT), pump speed (PS), maltodextrin percentage (MD), and needle speed (NS) in the ranges of 160–200°C, 3–9 mL/min, 10–30%, and 5–9 s, respectively. The encapsulation efficiency (EE) ranged between 89.30 and 81.57%. The EPA and DHA retentions were in the ranges of 2.19–1.87 g/100 g and 3.20–2.75 g/100 g, respectively. The highest results for responses were observed on the following conditions: IAT was 160°C, PS was 9 mL/min, MD was 30%, and NS was 9 s, respectively; the minimum values of response factors were obtained on the following conditions: IAT was 200°C, PS was 3 mL/min, MD was 10%, and NS was 5 s, respectively. The percent losses of EPA and DHA were noted in the range of 2–18%. The IAT was observed as main factor for FA reduction in SDP samples. The SDP samples were stable, and low rate of peroxide values was noted. Overall, spray drying can be potentially used to incorporate the essential fatty acids in milk to produce stable SDP for food applications

    Loss differentiation: Moving onto high-speed wireless LANs

    No full text
    Abstract—A fundamental problem in 802.11 wireless networks is to accurately determine the cause of packet losses. This becomes increasingly important as wireless data rates scale to Gbps, where lack of loss differentiation leads to higher loss in throughput. Recent and upcoming high-speed WLAN standards, such as 802.11n and 802.11ac, use frame aggregation and block acknowledgements for achieving efficient communication. This paper presents BLMon, a framework for loss differentiation, that uses loss patterns within aggregate frames and aggregate frame retries to achieve accurate and low overhead loss differentiation. Towards this end, we carry out a detailed measurement study on a real testbed to ascertain the differences in loss patterns due to noise, collisions, and hidden nodes. We then devise metrics to quantitatively capture these differences. Finally, we design BLMon, which collectively uses these metrics to infer the cause of loss without requiring any out-of-band communication, protocol changes, or customized hardware support. BLMon can be readily deployed on commodity devices using only driver-level changes at the sender-side. We implement BLMon in the ath9k driver and using real testbed experiments, show that it can provide up to 5 improvement in throughput. I

    OMEGA-3 Fatty Acids Retention, Oxidative Quality, and Sensoric Acceptability of Spray-Dried Flaxseed Oil

    No full text
    Flaxseed is naturally a rich source of essential omega-3 fatty acid, α-linolenic acid (ALA), which exhibits nearly 57% of its entire fatty acid profile. Oxidation of omega-3 fatty acids during processing and storage results in reduced shelf stability of food products and limited health potentials. Spray-drying is considered a processing technique to shield omega-3 fatty acids from oxidative damage. For the purpose, the extracted flaxseed oil (FSO) together with the emulsifier (flaxseed meal polysaccharide gum) was passed through a mini spray-dryer to prepare spray-dried flaxseed oil (SDFSO) samples. The SDFSO samples for quality were evaluated at 0th, 30th, and 60th days of storage at two different temperatures of 4°C and 25°C, accordingly. The maximum oil protection efficiency was recorded as 90.78% at 160°C. The highest percentage for ALA retention was recorded as 54.7% and 53.9% at 4°C, while the lowest retention was observed as 48.6% and 46.2% at 25°C after 30 and 60 days of storage, respectively. The inlet (160°C) and outlet air temperatures (80°C) were considered as key factors contributing a decline in retention of ALA of the SDFSO samples. The free fatty acid contents of FSO and SDFSO samples reached to their peaks, i.e., 1.22% and 0.75%, respectively, after 60 days of storage at 25°C. The initial peroxide value of FSO (control) was 0.16, which increased to 0.34 (4°C) and 1.10 (25°C) meq/kg O2 at the end of 60 days storage. The value for malondialdehyde of SDFSO samples was increased from 0.17 (0 day) to 0.34 nmol/g of lipids at 60 days (4°C), and the same increasing trend was observed at 25°C. In the case of color and overall acceptability, the lowest evaluation scores were awarded to FSO samples in comparison to SDFSO samples. Overall, SDFSO possessed improved oxidative quality and can be recommended as a fortifying agent in various functional food products

    DNA methylation signatures of breast cancer in peripheral T-cells

    No full text
    Abstract Background Immune surveillance acts as a defense mechanism in cancer, and its disruption is involved in cancer progression. DNA methylation reflects the phenotypic identity of cells and recent data suggested that DNA methylation profiles of T cells and peripheral blood mononuclear cells (PBMC) are altered in cancer progression. Methods We enrolled 19 females with stage 1 and 2, nine with stage 3 and 4 and 9 age matched healthy women. T cells were isolated from peripheral blood and extracted DNA was subjected to Illumina 450 K DNA methylation array analysis. Raw data was analyzed by BMIQ, ChAMP and ComBat followed by validation of identified genes by pyrosequencing. Results Analysis of data revealed ~ 10,000 sites that correlated with breast cancer progression and established a list of 89 CG sites that were highly correlated (p  0.7, r < − 0.7) with breast cancer progression. The vast majority of these sites were hypomethylated and enriched in genes with functions in the immune system. Conclusions The study points to the possibility of using DNA methylation signatures as a noninvasive method for early detection of breast cancer and its progression which need to be tested in clinical studies

    Additional file 1: of DNA methylation signatures of breast cancer in peripheral T-cells

    No full text
    Table S1. Clinical table of normal individuals and cancer patients. Table S2. Primer sequences. Table S3. List of CpG probes, whose DNA methylation changes correlate with progression in t-cells of breast cancer patients. Table S4. List of top 89 CpG probes (r > 0.7, r < − 0.7, p < 0.01), whose DNA methylation changes correlate with progression in t-cells of breast cancer patients. Table S5. Differentially methylated probes in t-cells of breast cancer patients. Table S6. Differentially methylated probes in t-cells of breast cancer patients (stages 1 and 2). Table S7. Differentially methylated probes in t-cells of breast cancer patients (stages 3 and 4). Table S8. List of overlapped differentially methylated probes between stages 1,2 and stages 3 and 4 in t-cells of breast cancer patients. Table S9. Ingenuity Canonical Pathways of differentially methylated genes in T cells of breast cancer. Table S10. Upstream regulators of differentially methylated genes in T cells of breast cancer. Table S11. Overlap CpG probes, whose DNA methylation changes correlate with progression in t-cells of breast cancer patients and differentially methylated probes in DCIS, mixed and invasive breast from dataset GSE60185. Table S12. Canonical Pathways of genes whose DNA methylation changes with breat cancer progression in T cells and overlapped with differentially methylated genes in DCIS, mixed and invasive breast cancer. Table S13. Upstream regulators of genes whose DNA methylation changes with breat cancer progression in T cells and overlapped with differentially methylated genes in DCIS, mixed and invasive breast cancer. (XLSX 6740 kb
    corecore