6 research outputs found

    Medical humanities in practice

    Get PDF
    Stephanie Matthews and colleagues look at why you might want to go to a medical humanities conferenc

    Waste Animal Bones as Catalysts for Biodiesel Production; A Mini Review

    Get PDF
    Slaughterhouse waste is considered to be an emerging issue because of its disposal cost. As an alternative, it would be a great prospect for the bioeconomy society to explore new usages of these leftover materials. As per food safety rules mentioned by EU legislation, all bone waste generated by slaughterhouses ought to be disposed of by rendering. The huge quantity of worldwide bone waste generation (130 billion kilograms per annum) is an environmental burden if not properly managed. The waste animal bones can be efficiently employed as a heterogeneous catalyst to produce biodiesel. This mini review summarized the recent literature reported for biodiesel generation using waste animal bones derived heterogeneous catalyst. It discusses the sources of bone waste, catalyst preparation methods, particularly calcination and its effects, and important characteristics of bones derived catalyst. It suggests that catalysts extracted from waste animal bones have suitable catalytic activity in transesterification of different oil sources to generate a good quality biodiesel

    Indirect effects of the COVID-19 pandemic on paediatric healthcare use and severe disease: a retrospective national cohort study

    Get PDF
    OBJECTIVES: To determine the indirect consequences of the COVID-19 pandemic on paediatric healthcare utilisation and severe disease at a national level following lockdown on 23 March 2020. DESIGN: National retrospective cohort study. SETTING: Emergency childhood primary and secondary care providers across Scotland; two national paediatric intensive care units (PICUs); statutory death records. PARTICIPANTS: 273 455 unscheduled primary care attendances; 462 437 emergency department attendances; 54 076 emergency hospital admissions; 413 PICU unplanned emergency admissions requiring invasive mechanical ventilation; and 415 deaths during the lockdown study period and equivalent dates in previous years. MAIN OUTCOME MEASURES: Rates of emergency care consultations, attendances and admissions; clinical severity scores on presentation to PICU; rates and causes of childhood death. For all data sets, rates during the lockdown period were compared with mean or aggregated rates for the equivalent dates in 2016–2019. RESULTS: The rates of emergency presentations to primary and secondary care fell during lockdown in comparison to previous years. Emergency PICU admissions for children requiring invasive mechanical ventilation also fell as a proportion of cases for the entire population, with an OR of 0.52 for likelihood of admission during lockdown (95% CI 0.37 to 0.73), compared with the equivalent period in previous years. Clinical severity scores did not suggest children were presenting with more advanced disease. The greatest reduction in PICU admissions was for diseases of the respiratory system; those for injury, poisoning or other external causes were equivalent to previous years. Mortality during lockdown did not change significantly compared with 2016–2019. CONCLUSIONS: National lockdown led to a reduction in paediatric emergency care utilisation, without associated evidence of severe harm

    Effect of palm-sesame biodiesel fuels with alcoholic and nanoparticle additives on tribological characteristics of lubricating oil by four ball tribo-tester

    Get PDF
    Dilution of engine oil with unburned fuels alters its lubricity and tribological properties. In this research paper, SAE-40 lubricating oil samples were contaminated with known percentages (5%) of fuels (diesel, palm-sesame biodiesel blend (B30), B30 + ethanol, B30 + dimethyl carbonate, B30 + carbon nanotubes and, B30 + titanium oxide). The effect of all these fuels on wear and frictional characteristics of lubricating oil was determined by using a 4-ball tribo tester and wear types on worn surfaces were analyzed by using SEM. Lubricating oil diluted with B10 (commercial diesel) showed highest COF (42.95%) with severe abrasive and adhesive wear than mineral lubricant among other fuels. Lubricating oil diluted with palm-sesame biodiesel (B30 blend) with alcoholic additives showed comparatively less COF, less wear scar diameter and polishing wear due to presence of ester molecules. Lub + B30 + Eth exhibited increment in COF value (35.81%) compared to SAE-40 mineral lubricant. While lubricating oil contaminated with B30 with nanoparticles showed least frictional characteristics with abrasive wear. Lub + B30 + TiO2 showed least increment in COF value (13.78%) among all other contaminated fuels compared to SAE-40 mineral lubricant. It is concluded that nanoparticles in biodiesel blends (B30) helps in reducing degradation of lubricants than alcoholic fuel additives and commercial diesel. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University

    PHYTOCHEMICAL PROFILING OF SUCCESSIVE EXTRACTS OF FRUIT AND STEM BARK OF SOLANUM PUBESCENS

    No full text
    Objective: Solanum (L) is the most representative genus of Solanaceae, Solanum species are a rich source of bioactive compounds which are known to possess a variety of biological activities. Solanum pubescens is a wild plant growing abundantly as weed in forest and the hills of South-Eastern Ghats in Andhra Pradesh. This study purposed to investigate the phytochemical constituents present in different extracts of Solanum pubescens. Methods: Solvents such as hexane, chloroform, ethyl acetate and ethanol, were used to isolate the bioactive compounds from fruit and stem bark. Fluorescence analyses of the plant powder and of different successive extracts were carried out under normal light and UV light. Results: The preliminary phytochemical screening of fruit and stem bark has revealed that oils & fats, alkaloids, flavonoids, carbohydrates, saponins, coumarins and phenolics are present in different extracts. Interestingly, alkaloids are present only in the ethanol extract. The quantitative analysis revealed that Solanum pubescens is very rich in phenolics followed by flavonoids, alkaloids, saponins, carbohydrates and oils, which gives a very strong reason to select this plant for future evaluation for its pharmacological properties. It is interesting to note that this is the first report showing a thorough qualitative and quantitative analysis of fruit and stem bark of Solanum pubescens. Conclusion: This study certainly helps us to detect specifically the cytotoxic compounds, which are presumed to play an important role in exerting curative properties of various ailments

    COVID and Cancer: A Complete 3D Advanced Radiological CT-Based Analysis to Predict the Outcome

    No full text
    Background: Cancer patients infected with COVID-19 were shown in a multitude of studies to have poor outcomes on the basis of older age and weak immune systems from cancer as well as chemotherapy. In this study, the CT examinations of 22 confirmed COVID-19 cancer patients were analyzed. Methodology: A retrospective analysis was conducted on 28 cancer patients, of which 22 patients were COVID positive. The CT scan changes before and after treatment and the extent of structural damage to the lungs after COVID-19 infection was analyzed. Structural damage to a lung was indicated by a change in density measured in Hounsfield units (HUs) and by lung volume reduction. A 3D radiometric analysis was also performed and lung and lesion histograms were compared. Results: A total of 22 cancer patients were diagnosed with COVID-19 infection. A repeat CT scan were performed in 15 patients after they recovered from infection. Most of the study patients were diagnosed with leukemia. A secondary clinical analysis was performed to show the associations of COVID treatment on the study subjects, lab data, and outcome on mortality. It was found that post COVID there was a decrease of >50% in lung volume and a higher density in the form of HUs due to scar tissue formation post infection. Conclusion: It was concluded that COVID-19 infection may have further detrimental effects on the lungs of cancer patients, thereby, decreasing their lung volume and increasing their lung density due to scar formation
    corecore