103 research outputs found
Distributional reaction time properties in the Eriksen task: marked differences or hidden similarities with the Simon task?
In conflict tasks, the irrelevant stimulus attribute needs to be suppressed for the correct response to be produced. In the Simon task, earlier researchers have proposed that this suppression is the reason that, after an initial increase, the interference effect decreases for longer RTs, as reflected by late, negative-going delta plots. This view has been challenged by observations of positive-going delta plots, even for long RTs, in other conflict tasks, despite a similar necessity for suppression. For late negative-going delta plots to be interpreted as reflecting suppression, a necessary, although maybe not sufficient, condition is that similar patterns should be observed for other conflict tasks. We reasoned that a similar suppression could be present, but hidden, in the Eriksen flanker task. By recording and analyzing electromyograms of the muscles involved in response execution, we could compute delta plots separately for trials that elicited a subthreshold incorrect response activation (partial error). Late negative-going delta plots were observable on partial-error trials, although they were weaker than for the Simon task, reducing the impact of this inversion on the overall distribution. We further showed that this pattern is modulated by time pressure. Those results indicate that mechanisms leading to negative-going delta plots, similar to those observed in the Simon task, are also at play in the Eriksen task. The link between negative-going delta plots and executive online control is discussed
Recommended from our members
Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view
Among the different brain imaging techniques, electroencephalography (EEG) is classically considered as having an excellent temporal resolution, but a poor spatial one. Here, we argue that the actual temporal resolution of conventional (scalp potentials) EEG is overestimated, and that volume conduction, the main cause of the poor spatial resolution of EEG, also distorts the recovered time course of the underlying sources at scalp level, and hence degrades the actual temporal resolution of EEG. While Current Source Density (CSD) estimates, through the Surface Laplacian (SL) computation, are well known to dramatically reduce volume conduction effects and hence improve EEG spatial resolution, its positive impact on EEG temporal resolution is much less recognized. In two simulation studies, we first show how volume conduction and reference electrodes distort the scalp potential time course, and how SL transform provides a much better spatio-temporal description. We then exemplify similar effects on two empirical datasets. We show how the time courses of the scalp potentials mis-estimate the latencies of the relevant brain events and that CSD provides a much richer, and much more accurate, view of the spatio-temporal dynamics of brain activity
Recommended from our members
Controlling Your Impulses: Electrical Stimulation of the Human Supplementary Motor Complex Prevents Impulsive Errors
To err is human. However, an inappropriate urge does not always result in error. Impulsive errors thus entail both a motor system capture by an urge to act and a failed inhibition of that impulse. Here we show that neuromodulatory electrical stimulation of the supplementary motor complex in healthy humans leaves action urges unchanged but prevents them from turning into overt errors. Subjects performed a choice reaction-time task known to trigger impulsive responses, leading to fast errors that can be revealed by analyzing accuracy as a function of poststimulus time. Yet, such fast errors are only the tip of the iceberg: electromyography (EMG) revealed fast subthreshold muscle activation in the incorrect response hand in an even larger proportion of overtly correct trials, revealing covert response impulses not discernible in overt behavior. Analyzing both overt and covert response tendencies enables to gauge the ability to prevent these incorrect impulses from turning into overt action errors. Hyperpolarizing the supplementary motor complex using transcranial direct current stimulation (tDCS) preserves action impulses but prevents their behavioral expression. This new combination of detailed behavioral, EMG, and tDCS techniques clarifies the neurophysiology of impulse control, and may point to avenues for improving impulse control deficits in various neurologic and psychiatric disorders
Changes in corticospinal excitability and the direction of evoked movements during motor preparation: A TMS study
BACKGROUND: Preparation of the direction of a forthcoming movement has a particularly strong influence on both reaction times and neuronal activity in the primate motor cortex. Here, we aimed to find direct neurophysiologic evidence for the preparation of movement direction in humans. We used single-pulse transcranial magnetic stimulation (TMS) to evoke isolated thumb-movements, of which the direction can be modulated experimentally, for example by training or by motor tasks. Sixteen healthy subjects performed brisk concentric voluntary thumb movements during a reaction time task in which the required movement direction was precued. We assessed whether preparation for the thumb movement lead to changes in the direction of TMS-evoked movements and to changes in amplitudes of motor-evoked potentials (MEPs) from the hand muscles. RESULTS: When the required movement direction was precued early in the preparatory interval, reaction times were 50 ms faster than when precued at the end of the preparatory interval. Over time, the direction of the TMS-evoked thumb movements became increasingly variable, but it did not turn towards the precued direction. MEPs from the thumb muscle (agonist) were differentially modulated by the direction of the precue, but only in the late phase of the preparatory interval and thereafter. MEPs from the index finger muscle did not depend on the precued direction and progressively decreased during the preparatory interval. CONCLUSION: Our data show that the human corticospinal movement representation undergoes progressive changes during motor preparation. These changes are accompanied by inhibitory changes in corticospinal excitability, which are muscle specific and depend on the prepared movement direction. This inhibition might indicate a corticospinal braking mechanism that counteracts any preparatory motor activation
Detecting and correcting partial errors: Evidence for efficient control without conscious access
Appropriate reactions to erroneous actions are essential to keeping behavior adaptive. Erring, however, is not an all-or-none process: electromyographic (EMG) recordings of the responding muscles have revealed that covert incorrect response activations (termed "partial errors") occur on a proportion of overtly correct trials. The occurrence of such "partial errors" shows that incorrect response activations could be corrected online, before turning into overt errors. In the present study, we showed that, unlike overt errors, such "partial errors" are poorly consciously detected by participants, who could report only one third of their partial errors. Two parameters of the partial errors were found to predict detection: the surface of the incorrect EMG burst (larger for detected) and the correction time (between the incorrect and correct EMG onsets; longer for detected). These two parameters provided independent information. The correct(ive) responses associated with detected partial errors were larger than the "pure-correct" ones, and this increase was likely a consequence, rather than a cause, of the detection. The respective impacts of the two parameters predicting detection (incorrect surface and correction time), along with the underlying physiological processes subtending partial-error detection, are discussed
Effects of acute tryptophan depletion on executive function in healthy male volunteers
BACKGROUND: Neurocognitive impairment is frequently described in a number of psychiatric disorders and may be a direct consequence of serotonergic dysfunction. As impairments in executive functions are some of the most frequently described, the purpose of this study was to examine the performance of normal volunteers on a range of executive tasks following a transient reduction of central serotonin (5-HT) levels using the method of acute tryptophan depletion (ATD). METHODS: Fifteen healthy male subjects participated in a within-subject, double-blind, counterbalanced crossover study. ATD was induced by ingestion of a 100 g amino-acid drink. Executive function was evaluated using the Wisconsin Card Sorting Test, Stroop, Verbal Fluency and Trail Making. Visual analogue scales were administered to assess mood. RESULTS: Plasma free and total tryptophan concentrations were significantly reduced by the depleting drink (P < 0.001). ATD selectively improved motor speed/ attention on the Trails A test (P = 0.027), with no effect on subjective ratings of mood. Interaction effects between drink and the order of drink administration were observed on most neurocognitive tests. CONCLUSIONS: The improvement in simple motor speed/ attention following ATD is in keeping with the ascribed role of 5-HT in the cortex, however performance on tests of executive function is not robustly altered. The presence of interaction effects on most tasks suggests that subtle changes may occur but are masked, possibly by simple learning effects, in the context of a crossover design. This has implications for the design of future studies, particularly those examining executive functions
- …