85 research outputs found

    A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    Get PDF
    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel industry, and final steel product mix in both countries. The share of lower energy intensity electric arc furnace production in each country was a key determinant of total steel sector energy efficiency. Overall steel sector structure, in terms of average plant vintage and production capacity, is also an important variable though data were not available to quantify this in a scenario. The methodology developed in this report, along with the accompanying quantitative and qualitative analyses, provides a foundation for comparative international assessment of steel sector energy intensity

    China Energy and Emissions Paths to 2030

    Get PDF
    After over two decades of staggering economic growth and soaring energy demand, China has started taking serious actions to reduce its economic energy and carbon intensity by setting short and medium-term intensity reduction targets, renewable generation targets and various supporting policies and programs. In better understanding how further policies and actions can be taken to shape China's future energy and emissions trajectory, it is important to first identify where the largest opportunities for efficiency gains and emission reduction lie from sectoral and end-use perspectives. Besides contextualizing China's progress towards reaching the highest possible efficiency levels through the adoption of the most advanced technologies from a bottom-up perspective, the actual economic costs and benefits of adopting efficiency measures are also assessed in this study. This study presents two modeling methodologies that evaluate both the technical and economic potential of raising China's efficiency levels to the technical maximum across sectors and the subsequent carbon and energy emission implications through 2030. The technical savings potential by efficiency measure and remaining gap for improvements are identified by comparing a reference scenario in which China continues the current pace of with a Max Tech scenario in which the highest technically feasible efficiencies and advanced technologies are adopted irrespective of costs. In addition, from an economic perspective, a cost analysis of selected measures in the key industries of cement and iron and steel help quantify the actual costs and benefits of achieving the highest efficiency levels through the development of cost of conserved energy curves for the sectors. The results of this study show that total annual energy savings potential of over one billion tonne of coal equivalent exists beyond the expected reference pathway under Max Tech pathway in 2030. CO2 emissions will also peak earlier under Max Tech, though the 2020s is a likely turning point for both emission trajectories. Both emission pathways must meet all announced and planned policies, targets and non-fossil generation targets, or an even wider efficiency gap will exist. The savings potential under Max Tech varies by sector, but the industrial sector appears to hold the largest energy savings and emission reduction potential. The primary source of savings is from electricity rather than fuel, and electricity savings are magnified by power sector decarbonization through increasing renewable generation and coal generation efficiency improvement. In order to achieve the maximum energy savings and emission reduction potential, efficiency improvements and technology switching must be undertaken across demand sectors as well as in the growing power sector. From an economic perspective, the cost of conserved energy analysis indicates that nearly all measures for the iron and steel and cement industry are cost-effective. All 23 efficiency measures analyzed for the cement industry are cost-effective, with combined CO2 emission reduction potential of 448 Mt CO2. All of the electricity savings measures in the iron and steel industry are cost-effective, but the cost-effective savings potential for fuel savings measures is slightly lower than total technical savings potential. The total potential savings from these measures confirm the magnitude of savings in the scenario models, and illustrate the remaining efficiency gap in the cement and iron and steel industries

    Exergy analysis of energy-intensive production processes: advancing towards a sustainable chemical industry

    Get PDF
    Exergy analysis is becoming a very powerful strategy to evaluate the real efficiency of a process. Its application in the chemical industry is still at an early stage but many interesting remarks can be obtained from the recent research in the most energy intensive processes of the chemical industry: the production of chemicals, the cement industry, the paper industry and, the iron and steel industry. The present review analyzes the opportunities and challenges in those sectors by considering exergy analyses as the first required step (although not sufficient) to advance towards a more sustainable chemical industry. Social, environmental and economic factors play a role in the critical evaluation of a process and exergy could be considered as the property that joins together those three cores of sustainability

    Electrification of Steam and Thermal Oil Boilers in the Textile Industry: Techno-Economic Analysis for China, Japan, and Taiwan

    No full text
    Process heating is typically more than half of the total final energy demand in the textile industry, most of which is usually provided by fossil fuels. There is significant potential to decarbonize the textile industry by the electrification of process heating where low-carbon electricity is used. This study aims to quantify the potential for the electrification of process heating in the textile sector in three of the top textile manufacturing and exporting countries in the world. The results show that the total annual potential energy savings due to the electric steam boiler applications are estimated to be around 92, 2.4, and 2.5 PJ in China, Japan, and Taiwan, respectively, by 2050. This is equal to approximately 19% of the total boiler energy demand in the three economies. Similarly, annual potential energy savings of 8.6, 0.21, and 0.24 PJ can be realized if the existing fossil-fuel-fired thermal oil boilers are electrified in the textile industry in China, Japan, and Taiwan, respectively, by 2050. Moreover, the potential CO2 abatement resulting from the electrification is highly dependent on the carbon intensity of the electricity used. The economic analysis shows that switching from combustion boilers to electric boilers may result in higher energy costs primarily because the average electricity prices in all three economies are substantially higher than fossil fuel prices. Finally, some key recommendations that different stakeholders can take to scale up electrification in the textile industry are provided
    • …
    corecore