8 research outputs found

    Analysis of patterns of livestock movements in the Cattle Corridor of Uganda for risk-based surveillance of infectious diseases

    Get PDF
    IntroductionThe knowledge of animal movements is key to formulating strategic animal disease control policies and carrying out targeted surveillance. This study describes the characteristics of district-level cattle, small ruminant, and pig trade networks in the Cattle Corridor of Uganda between 2019 and 2021.MethodologyThe data for the study was extracted from 7,043 animal movement permits (AMPs) obtained from the Ministry of Agriculture, Animal Industry and Fisheries (MAAIF) of Uganda. Most of the data was on cattle (87.2%), followed by small ruminants (11.2%) and pigs (1.6%). Two types of networks representing animal shipments between districts were created for each species based on monthly (n = 30) and seasonal (n = 10) temporal windows. Measures of centrality and cohesiveness were computed for all the temporal windows and our analysis identified the most central districts in the networks.ResultsThe median in-degree for monthly networks ranged from 0–3 for cattle, 0–1 for small ruminants and 0–1 for pigs. The highest median out-degrees for cattle, small ruminant and pig monthly networks were observed in Lira, Oyam and Butambala districts, respectively. Unlike the pig networks, the cattle and small ruminant networks were found to be of small-world and free-scale topologies.DiscussionThe cattle and small ruminant trade movement networks were also found to be highly connected, which could facilitate quick spread of infectious animal diseases across these networks. The findings from this study highlighted the significance of characterizing animal movement networks to inform surveillance, early detection, and subsequent control of infectious animal disease outbreaks

    Modeling the spread of porcine reproductive and respiratory syndrome among pig farms in Lira District of northern Uganda

    Get PDF
    Porcine Reproductive and Respiratory Syndrome (PRRS) is a viral swine disease that causes reproductive failure in breeding sows and respiratory distress in growing pigs. The main objectives were to simulate the transmission patterns of PRRS in Uganda using North American Animal Disease Spread Model (NAADSM) and to evaluate the potential effect of prevention and control options such as vaccination and movement control. The median number of infectious farms at the end of 52 weeks for the baseline scenario was 735 (36.75% of the 2,000 farms). The best effects of vaccination were observed in scenarios 60% farm coverage and 80% farm coverage, which resulted in 82 and 98.2% reduction in the median number of infectious farms at the end of the simulation, respectively. Vaccination of all medium and large farms only (33% of the farms) resulted in a 71.2% decrease in the median number of infectious farms at the end of 52 weeks. Movement control (MC) results showed that the median number of infectious farms at the end of 52 weeks decreased by 21.6, 52.3, 79.4, and 92.4% for scenarios MC 20, MC 40, MC 60, and MC 80%, respectively. This study provides new insights to the government of Uganda on how PRRS can be controlled. The large and medium farms need to be prioritized for vaccination, which would be a feasible and effective way to limit the spread of PRRS in Uganda. Scavenging pigs should be confined at all times, whether in the presence or absence of any disease outbreaks

    Analysis of patterns of livestock movements in the Cattle Corridor of Uganda for risk-based surveillance of infectious diseases

    No full text
    Introduction: The knowledge of animal movements is key to formulating strategic animal disease control policies and carrying out targeted surveillance. This study describes the characteristics of district-level cattle, small ruminant, and pig trade networks in the Cattle Corridor of Uganda between 2019 and 2021. Methodology: The data for the study was extracted from 7,043 animal movement permits (AMPs) obtained from the Ministry of Agriculture, Animal Industry and Fisheries (MAAIF) of Uganda. Most of the data was on cattle (87.2%), followed by small ruminants (11.2%) and pigs (1.6%). Two types of networks representing animal shipments between districts were created for each species based on monthly (n = 30) and seasonal (n = 10) temporal windows. Measures of centrality and cohesiveness were computed for all the temporal windows and our analysis identified the most central districts in the networks. Results: The median in-degree for monthly networks ranged from 0–3 for cattle, 0–1 for small ruminants and 0–1 for pigs. The highest median out-degrees for cattle, small ruminant and pig monthly networks were observed in Lira, Oyam and Butambala districts, respectively. Unlike the pig networks, the cattle and small ruminant networks were found to be of small-world and free-scale topologies. Discussion: The cattle and small ruminant trade movement networks were also found to be highly connected, which could facilitate quick spread of infectious animal diseases across these networks. The findings from this study highlighted the significance of characterizing animal movement networks to inform surveillance, early detection, and subsequent control of infectious animal disease outbreaks
    corecore