187 research outputs found

    Sulfatide activator protein : alternative splicing that generates three mRNAs and a newly found mutation responsible for a clinical disease

    Get PDF
    The sulfatide activator protein, also known as SAP-1, is derived from a gene that generates an mRNA coding for four homologous proteins. Its physiological function is to stimulate hydrolysis of sulfatide by arylsulfatase A in vivo. A genetic defect in the sulfatide activator results in a metabolic disorder similar to classical metachromatic leukodystrophy, which is itself caused by a genetic defect in arylsulfatase A. In a patient with sulfatide activator deficiency, a nucleotide transversion G722----C (counted from A of the initiation codon ATG) was found in the mRNA of the sulfatide activator precursor, resulting in the substitution of serine for Cys241 in the mature sulfatide activator. The remainder of the coding sequence was completely normal except for a polymorphism C to T in position 1389, which does not change the amino acid sequence. The patient produces at least three different forms of mRNA for the precursor. Two of them include a stretch of an additional 9 and 6 bases, respectively, within the sulfatide activator coding region. In normal individuals this stretch of additional bases has also been observed. This could be explained by the presence of a small 9-base pair exon which can be introduced, or not, by alternative splicing as a stretch of 9 or 6 bases into the mature mRNA. The shortest form of the mRNA yields an active sulfatide activator (Fürst, W., Schubert, J., Machleidt, W., Meier, H. E., and Sandhoff, K. (1990) Eur. J. Biochem. 192, 709-714)

    Influence of short-term dietary measures on dioxin concentrations in human milk.

    Get PDF
    Breast-feeding may expose infants to high levels of toxic chlorinated dioxins. To diminish intake of these lipophilic compounds by the baby, two diets were tested for their ability to reduce concentrations of dioxins in human milk. The diets were a low-fat/high- carbohydrate/low-dioxin diet. (about 20% of energy intake derived from fat) and a high fat /low-carbohydrate/low-dioxin diet. These diets were tested in 16 and 18 breast-feeding women, respectively. The test diets were followed for 5 consecutive days in the fourth week after delivery. Milk was sampled before and at the end of the dietary regimen, and dioxin concentrations and fatty acid concentrations were determined. Despite significant influences of these diets on the fatty acid profiles, no significant influence on the dioxin concentrations in breast milk could be found. We conclude that short-term dietary measures will not reduce dioxin concentration in human milk

    The Sagnac Phase Shift suggested by the Aharonov-Bohm effect for relativistic matter beams

    Full text link
    The phase shift due to the Sagnac Effect, for relativistic matter beams counter-propagating in a rotating interferometer, is deduced on the bases of a a formal analogy with the the Aharonov-Bohm effect. A procedure outlined by Sakurai, in which non relativistic quantum mechanics and newtonian physics appear together with some intrinsically relativistic elements, is generalized to a fully relativistic context, using the Cattaneo's splitting technique. This approach leads to an exact derivation, in a self-consistently relativistic way, of the Sagnac effect. Sakurai's result is recovered in the first order approximation.Comment: 18 pages, LaTeX, 2 EPS figures. To appear in General Relativity and Gravitatio

    Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films

    Full text link
    The influence of uncorrelated (nonmagnetic) overlayers on the magnetic properties of thin itinerant-electron films is investigated within the single-band Hubbard model. The Coulomb correlation between the electrons in the ferromagnetic layers is treated by using the spectral density approach (SDA). It is found that the presence of nonmagnetic layers has a strong effect on the magnetic properties of thin films. The Curie temperatures of very thin films are modified by the uncorrelated overlayers. The quasiparticle density of states is used to analyze the results. In addition, the coupling between the ferromagnetic layers and the nonmagnetic layers is discussed in detail. The coupling depends on the band occupation of the nonmagnetic layers, while it is almost independent of the number of the nonmagnetic layers. The induced polarization in the nonmagnetic layers shows a long-range decreasing oscillatory behavior and it depends on the coupling between ferromagnetic and nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see: http://orion.physik.hu-berlin.d

    Specific saposin C deficiency: CNS impairment and acid β-glucosidase effects in the mouse

    Get PDF
    Saposins A, B, C and D are derived from a common precursor, prosaposin (psap). The few patients with saposin C deficiency develop a Gaucher disease-like central nervous system (CNS) phenotype attributed to diminished glucosylceramide (GC) cleavage activity by acid β-glucosidase (GCase). The in vivo effects of saposin C were examined by creating mice with selective absence of saposin C (C−/−) using a knock-in point mutation (cysteine-to-proline) in exon 11 of the psap gene. In C−/− mice, prosaposin and saposins A, B and D proteins were present at near wild-type levels, but the saposin C protein was absent. By 1 year, the C−/− mice exhibited weakness of the hind limbs and progressive ataxia. Decreased neuromotor activity and impaired hippocampal long-term potentiation were evident. Foamy storage cells were observed in dorsal root ganglion and there was progressive loss of cerebellar Purkinje cells and atrophy of cerebellar granule cells. Ultrastructural analyses revealed inclusions in axonal processes in the spinal cord, sciatic nerve and brain, but no excess of multivesicular bodies. Activated microglial cells and astrocytes were present in thalamus, brain stem, cerebellum and spinal cord, indicating regional pro-inflammatory responses. No storage cells were found in visceral organs of these mice. The absence of saposin C led to moderate increases in GC and lactosylceramide (LacCer) and their deacylated analogues. These results support the view that saposin C has multiple roles in glycosphingolipid (GSL) catabolism as well as a prominent function in CNS and axonal integrity independent of its role as an optimizer/stabilizer of GCase

    Corneal Alterations during Combined Therapy with Cyclodextrin/Allopregnanolone and Miglustat in a Knock-Out Mouse Model of NPC1 Disease

    Get PDF
    BACKGROUND: Niemann Pick disease type C1 is a neurodegenerative disease caused by mutations in the NPC1 gene, which result in accumulation of unesterified cholesterol and glycosphingolipids in the endosomal-lysosomal system as well as limiting membranes. We have previously shown the corneal involvement in NPC1 pathology in form of intracellular inclusions in epithelial cells and keratocytes. The purpose of the present study was to clarify if these inclusions regress during combined substrate reduction- and by-product therapy (SRT and BPT). METHODOLOGY/PRINCIPAL FINDINGS: Starting at postnatal day 7 (P7) and thereafter, NPC1 knock-out mice (NPC1(-/-)) and wild type controls (NPC1(+/+)) were injected with cyclodextrin/allopregnanolone weekly. Additionally, a daily miglustat injection started at P10 until P23. Starting at P23 the mice were fed powdered chow with daily addition of miglustat. The sham group was injected with 0.9% NaCl at P7, thereafter daily starting at P10 until P23, and fed powdered chow starting at P23. For corneal examination, in vivo confocal laser-scanning microscopy (CLSM) was performed one day before experiment was terminated. Excised corneas were harvested for lipid analysis (HPLC/MS) and electron microscopy. In vivo CLSM demonstrated a regression of hyperreflective inclusions in all treated NPC1(-/-)mice. The findings varied between individual mice, demonstrating a regression, ranging from complete absence to pronounced depositions. The reflectivity of inclusions, however, was significantly lower when compared to untreated and sham-injected NPC1(-/-) mice. These confocal findings were confirmed by lipid analysis and electron microscopy. Another important CLSM finding revealed a distinct increase of mature dendritic cell number in corneas of all treated mice (NPC1(-/-) and NPC1(+/+)), including sham-treated ones. CONCLUSIONS/SIGNIFICANCE: The combined substrate reduction- and by-product therapy revealed beneficial effects on the cornea. In vivo CLSM is a non-invasive tool to monitor disease progression and treatment effects in NPC1 disorder

    Novel Patient Cell-Based HTS Assay for Identification of Small Molecules for a Lysosomal Storage Disease

    Get PDF
    Small molecules have been identified as potential therapeutic agents for lysosomal storage diseases (LSDs), inherited metabolic disorders caused by defects in proteins that result in lysosome dysfunctional. Some small molecules function assisting the folding of mutant misfolded lysosomal enzymes that are otherwise degraded in ER-associated degradation. The ultimate result is the enhancement of the residual enzymatic activity of the deficient enzyme. Most of the high throughput screening (HTS) assays developed to identify these molecules are single-target biochemical assays. Here we describe a cell-based assay using patient cell lines to identify small molecules that enhance the residual arylsulfatase A (ASA) activity found in patients with metachromatic leukodystrophy (MLD), a progressive neurodegenerative LSD. In order to generate sufficient cell lines for a large scale HTS, primary cultured fibroblasts from MLD patients were transformed using SV40 large T antigen. These SV40 transformed (SV40t) cells showed to conserve biochemical characteristics of the primary cells. Using a specific colorimetric substrate para-nitrocatechol sulfate (pNCS), detectable ASA residual activity were observed in primary and SV40t fibroblasts from a MLD patient (ASA-I179S) cultured in multi-well plates. A robust fluorescence ASA assay was developed in high-density 1,536-well plates using the traditional colorimetric pNCS substrate, whose product (pNC) acts as “plate fluorescence quencher” in white solid-bottom plates. The quantitative cell-based HTS assay for ASA generated strong statistical parameters when tested against a diverse small molecule collection. This cell-based assay approach can be used for several other LSDs and genetic disorders, especially those that rely on colorimetric substrates which traditionally present low sensitivity for assay-miniaturization. In addition, the quantitative cell-based HTS assay here developed using patient cells creates an opportunity to identify therapeutic small molecules in a disease-cellular environment where potentially disrupted pathways are exposed and available as targets
    corecore