210 research outputs found

    The 51.8 micron (0 3) line emission observed in four galactic H 2 regions

    Get PDF
    The (0 III) 51.8 microns line from four H II regions, M42, M17, W51 and NGC 6375A was detected. Respective line strengths are 7 x 10 to the minus 15 power, 1.0 x 10 to the minus 14 power, 2.1 x 10 to the minus 15 power and 2.6 x 10 to the minus 15 power watt cm/2. Observations are consistent with previously reported line position and place the line at 51.80 + or 0.05 micron. When combined with the 88.35 microns (0 III) reported earlier, clumping seems to be an important factor in NGC 6375A and M42 and to a lesser extent in W51 and M17. The combined data also suggest an (0 III) abundance of approximately 3 x 0.0001 sub n e' a factor of 2 greater than previously assumed

    Observations of the 51.8 micron (O III) emission line in Orion

    Get PDF
    The 51.8 micron fine structure transition P2:3P2 3P1 for doubly ionized oxygen was observed in the Orion nebula. The observed line strength is of 5 plus or minus 3 times 10 to the minus 15th power watt/sq cm is in good agreement with theoretical predictions. Observations are consistent with the newly predicted 51.8 micron line position. The line lies close to an atmospheric water vapor feature at 51.7 micron, but is sufficiently distant so that corrections for this feature are straightforward. Observations of the 51.8 (O III) line are particularly important since the previously discovered 88 micron line from the same ion also is strong. This pair of lines should, therefore, yield new data about densities in observed H II regions; or else, if density data already are available from radio or other observations, the lines can be used to determine the differential dust absorption between 52 and 88 micron in front of heavily obscured regions

    Submillimeter observations of OH and CH in M42

    Get PDF
    The (sup 2) pi sub 1/2 (J = 3/2 to 1/2) transitions of OH at 163.12 and 163.40 micro m have been detected and upper limits have been obtained for the (sup 2) pi sub 3/2 (J = 3/2 to 1/2) transitions of CH at 149.09 and 149.39 micro m, in observations of the Kleinmann-Low Nebula of Orion. All four flux levels lie between 1 and 1.2 x 10 to the 17th power/sq.cm. The OH lines are bright when compared to the lower, (sup 2) pi sub 3/2 (J = 5/2 to 3/2) fluxes reported and imply that the 119 micro m emission observed is partially self-absorbed. The combined results provide strong constraints. Taken together with existing data on molecular hydrogen and CO and recent data on other OH transition, they suggest OH emission from post-shock regions at temperatures T approx 1000 k, densities approx. 7 x 10 to the 6th powr/cu cm N sub OH approx 80/cu cm optically thick for the (sup 2) pi sub 3/2 (J = 5/2 to 3/2), 119 micro m but only partially self-absorbing in the (J = 7/2 to 3/2), 84 micro m transitions over a Doppler velocity bandwidth of 30 km/sec. The OH column density is N sub OH approx 4 x 10 to the 16th powr/sq cm. in the emitting regions which occupy a fraction of approx 0.1 of a 1' x 1' field of view centered on the Becklin-Neugebauer source. The CO (J = 31 to 30), 84 micro m transition appears to lie sufficiently close to one of the 84 micro m OH line components to be partially absorbed as well, through a Bowen-type mechanism

    Photon Bunching at TeV Energies

    Get PDF
    Harwit, Protheroe, and Biermann (1999) recently proposed that Bose-Einstein photon bunching might significantly affect the interpretation of Cerenkov counts of TeV gamma photons. Here, we show that a combination of two recent results of Aharonian et al. (2000) and Aharonian et al. (2001) permits us to set new, more stringent upper limits of 10\lesssim 10% on the fractional amount of photon bunching in the 7-10 TeV radiation from Markarian 501. Potential bunching at even higher energies should nevertheless continue to be investigated for this and other TeV sources, since a clear understanding of TeV energy spectra is required to unambiguously determine the spectral energy density of the mid-infrared extragalactic background

    Infrared Emission from the Radio Supernebula in NGC 5253: A Proto-Globular Cluster?

    Get PDF
    Hidden from optical view in the starburst region of the dwarf galaxy NGC 5253 lies an intense radio source with an unusual spectrum which could be interpreted variously as nebular gas ionized by a young stellar cluster or nonthermal emission from a radio supernova or an AGN. We have obtained 11.7 and 18.7 micron images of this region at the Keck Telescope and find that it is an extremely strong mid-infrared emitter. The infrared to radio flux ratio rules out a supernova and is consistent with an HII region excited by a dense cluster of young stars. This "super nebula" provides at least 15% of the total bolometric luminosity of the galaxy. Its excitation requires 10^5-10^6 stars, giving it the total mass and size (1-2 pc diameter) of a globular cluster. However, its high obscuration, small size, and high gas density all argue that it is very young, no more than a few hundred thousand years old. This may be the youngest globular cluster yet observed.Comment: 6 pages, 2 color figures, Submitted to the ApJL, Revised 4/6/01 based on referee's comment

    van der Kruit to Spitzer: A New Look at the FIR-Radio Correlation

    Full text link
    We present an initial look at the far infrared-radio correlation within the star-forming disks of four nearby, nearly face-on galaxies (NGC~2403, NGC~3031, NGC~5194, and NGC~6946). Using {\it Spitzer} MIPS imaging and WSRT radio continuum data, we are able to probe variations in the logarithmic 70~μ\mum/22~cm (q70q_{70}) flux density ratios across each disk at sub-kpc scales. We find general trends of decreasing q70q_{70} with declining surface brightness and with increasing radius. We also find that the dispersion in q70q_{70} within galaxies is comparable to what is measured {\it globally} among galaxies at around 0.2 dex. We have also performed preliminary phenomenological modeling of cosmic ray electron (CRee^{-}) diffusion using an image-smearing technique, and find that smoothing the infrared maps improves their correlation with the radio maps. The best fit smoothing kernels for the two less active star-forming galaxies (NGC~2403 and NGC~3031) have much larger scale-lengths than that of the more active star-forming galaxies (NGC~5194 and NGC~6946). This difference may be due to the relative deficit of recent CRee^{-} injection into the interstellar medium (ISM) for the galaxies having largely quiescent disks.Comment: 6 pages, 3 figures, To appear in the proceedings of the "Island Universes: Structure and Evolution of Disk Galaxies" conference held in Terschelling, Netherlands, July 2005, ed. R. de Jong (Springer: Dordrecht

    Far infrared polarization of the Kleinmann-Low Nebula in Orion

    Get PDF
    Elongated dust grains aligned by local magnetic fields are though to absorb background radiation and produce linear and circular polarization which exhibit strong wavelength dependence in the near infrared. The NASA Kuiper observatory 91 cm infrared telescope was used to observe polarization characteristics of the Kleinmann-Low nebula in four far infrared wavelength bands in order to detect emission from these same oriented grains at longer wavelengths, and determine whether this radiation shows a direction of polarization perpendicular to that seen in the near infrared. The polarization, if any, that characterized the radiation in the three longest wavelength filter positions (28-48 micron, 44-72 micron, and 70-115 micron) is small. The noisiest measurements were obtained in the 16-33 micron filter position. Possible explanations for the low polarization observed at long wavelengths are explored

    Effects of CPT and Lorentz Invariance Violation on Pulsar Kicks

    Full text link
    The breakdown of Lorentz's and CPT invariance, as described by the Extension of the Standard Model, gives rise to a modification of the dispersion relation of particles. Consequences of such a modification are reviewed in the framework of pulsar kicks induced by neutrino oscillations (active-sterile conversion). A peculiar feature of the modified energy-momentum relations is the occurrence of terms of the form \delta {\bbox \Pi}\cdot {\bf {\hat p}}, where \delta {\bbox \Pi} accounts for the difference of spatial components of flavor depending coefficients which lead to the departure of the Lorentz symmetry, and p^=p/p{\bf {\hat p}}={\bf p}/p, being p{\bf p} the neutrino momentum. Owing to the relative orientation of p{\bf p} with respect to \delta {\bbox \Pi}, the {\it coupling} \delta {\bbox \Pi}\cdot {\bf {\hat p}} may induce the mechanism to generate the observed pulsar velocities. Topics related to the velocity distribution of pulsars are also discussed.Comment: 10 pages, 1 figur

    Observations of far-infrared transitions between excited states of OH

    Get PDF
    In observations of the Kleinmann-Low Nebula were detected of Orion 84.42 and 84.60 micron transitions between the P-2 sub 3/2 and Pi-2 sub 3/2 (J = 5/2) levels of OH with respective fluxes of 1.0 + or - 0.3 to the minus 17th power and 1.4 + or - 0.4 x 10 to the minus 17th power W cm/sq. When compared to 119 micron flux levels of OH and 153 micron flux levels of these radicals by Viscuso, these results suggest appreciable self-absorption of OH line radiation within the Nebula. It is probable that the CO emission due to the J = 31 yields 30 rotational transition at 84.411 micron makes a substantial contribution to the observed 84.42 micron flux, and that it also is at least partially absorbed at the 84.42 micron OH transition frequency. The 88.55 and 88.78 micron (J = 9/2 to 7/2) transitions of CH also were sought, but yielded only to upper limits of 3 x 10 to the minus 18th power W /sq cm each. A search of W3-IRS5 yields upper limits to the 84.42 micron OH and 87.19 micron CO (J = 30 to 29) transitions of 2 x 10 minus 18th power W cm/2

    FIRI - a Far-Infrared Interferometer

    Full text link
    Half of the energy ever emitted by stars and accreting objects comes to us in the FIR waveband and has yet to be properly explored. We propose a powerful Far-InfraRed Interferometer mission, FIRI, to carry out high-resolution imaging spectroscopy in the FIR. This key observational capability is essential to reveal how gas and dust evolve into stars and planets, how the first luminous objects in the Universe ignited, how galaxies formed, and when super-massive black holes grew. FIRI will disentangle the cosmic histories of star formation and accretion onto black holes and will trace the assembly and evolution of quiescent galaxies like our Milky Way. Perhaps most importantly, FIRI will observe all stages of planetary system formation and recognise Earth-like planets that may harbour life, via its ability to image the dust structures in planetary systems. It will thus address directly questions fundamental to our understanding of how the Universe has developed and evolved - the very questions posed by ESA's Cosmic Vision.Comment: Proposal developed by a large team of astronomers from Europe, USA and Canada and submitted to the European Space Agency as part of "Cosmic Vision 2015-2025
    corecore