24,103 research outputs found
Genomic variation in a widespread Neotropical bird (Xenops minutus) reveals divergence, population expansion, and gene flow
Elucidating the demographic and phylogeographic histories of species provides
insight into the processes responsible for generating biological diversity, and
genomic datasets are now permitting the estimation of histories and demographic
parameters with unprecedented accuracy. We used a genomic single nucleotide
polymorphism (SNP) dataset generated using a RAD-Seq method to investigate the
historical demography and phylogeography of a widespread lowland Neotropical
bird (Xenops minutus). As expected, we found that prominent landscape features
that act as dispersal barriers, such as Amazonian rivers and the Andes
Mountains, are associated with the deepest phylogeographic breaks, and also
that isolation by distance is limited in areas between these barriers. In
addition, we inferred positive population growth for most populations and
detected evidence of historical gene flow between populations that are now
physically isolated. Even with genomic estimates of historical demographic
parameters, we found the prominent diversification hypotheses to be untestable.
We conclude that investigations into the multifarious processes shaping species
histories, aided by genomic datasets, will provide greater resolution of
diversification in the Neotropics, but that future efforts should focus on
understanding the processes shaping the histories of lineages rather than
trying to reconcile these histories with landscape and climatic events in Earth
history.Comment: 61 pages, 4 figures (+3 supplemental), 3 tables (+6 supplemental
Advanced composites wing study program. Volume 1: Executive summary
The effort necessary to achieve a state of production readiness for the design and manufacturing of advanced composite wing structure is outlined. Technical assessment and program options are also reviewed for the wing study results
Theoretical Guidance on the Determinants of Success in Agricultural Marketing and Production Clubs
Institutional and Behavioral Economics, Marketing,
A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing
Evolutionary relationships among birds in Neoaves, the clade comprising the
vast majority of avian diversity, have vexed systematists due to the ancient,
rapid radiation of numerous lineages. We applied a new phylogenomic approach to
resolve relationships in Neoaves using target enrichment (sequence capture) and
high-throughput sequencing of ultraconserved elements (UCEs) in avian genomes.
We collected sequence data from UCE loci for 32 members of Neoaves and one
outgroup (chicken) and analyzed data sets that differed in their amount of
missing data. An alignment of 1,541 loci that allowed missing data was 87%
complete and resulted in a highly resolved phylogeny with broad agreement
between the Bayesian and maximum-likelihood (ML) trees. Although results from
the 100% complete matrix of 416 UCE loci were similar, the Bayesian and ML
trees differed to a greater extent in this analysis, suggesting that increasing
from 416 to 1,541 loci led to increased stability and resolution of the tree.
Novel results of our study include surprisingly close relationships between
phenotypically divergent bird families, such as tropicbirds (Phaethontidae) and
the sunbittern (Eurypygidae) as well as between bustards (Otididae) and turacos
(Musophagidae). This phylogeny bolsters support for monophyletic waterbird and
landbird clades and also strongly supports controversial results from previous
studies, including the sister relationship between passerines and parrots and
the non-monophyly of raptorial birds in the hawk and falcon families. Although
significant challenges remain to fully resolving some of the deep relationships
in Neoaves, especially among lineages outside the waterbirds and landbirds,
this study suggests that increased data will yield an increasingly resolved
avian phylogeny.Comment: 30 pages, 1 table, 4 figures, 1 supplementary table, 3 supplementary
figure
The White Dwarf Cooling Age of M67
A deep imaging survey covering the entire 23\arcmin diameter of the old
open cluster M67 to has been carried out using the mosaic imager
(UHCam) on the Canada-France-Hawaii Telescope. The cluster color-magnitude
diagram (CMD) can be traced from stars on its giant branch at down
through main sequence stars at least as faint as . Stars this low
in luminosity have masses below . A modest white dwarf (WD)
cooling sequence is also observed commencing slightly fainter than
and, after correction for background galaxy and stellar field contamination,
terminating near . The observed WDs follow quite closely a
theoretical cooling sequence for pure carbon core WDs with
hydrogen-rich atmospheres (DA WDs). The cooling time to an of 14.6 for
such WDs is 4.3 Gyr which we take as the WD cooling age of the cluster. A fit
of a set of isochrones to the cluster CMD indicates a turnoff age of 4.0 Gyr.
The excellent agreement between these results suggests that ages derived from
white dwarf cooling should be considered as reliable as those from other dating
techniques. The WDs currently contribute about 9% of the total cluster mass but
the number seen appears to be somewhat low when compared with the number of
giants observed in the cluster.Comment: 15 pages plus 3 diagrams, minor corrections, Accepted for publication
in the Astrophysical Journal Letters, to be published September 10, 199
Black Holes with a Massive Dilaton
The modifications of dilaton black holes which result when the dilaton
acquires a mass are investigated. We derive some general constraints on the
number of horizons of the black hole and argue that if the product of the black
hole charge and the dilaton mass satisfies then the black
hole has only one horizon. We also argue that for there may exist
solutions with three horizons and we discuss the causal structure of such
solutions. We also investigate the possible structures of extremal solutions
and the related problem of two-dimensional dilaton gravity with a massive
dilaton.Comment: 36 pages with 5 figures (as uuencoded compressed tar file) (revised
version has one major change in bound on mass for extremal solution and minor
typos fixed), harvma
Anomaly mediated neutrino-photon interactions at finite baryon density
We propose new physical processes based on the axial vector anomaly and
described by the Wess-Zumino-Witten term that couples the photon, Z-boson, and
the omega-meson. The interaction takes the form of a pseudo-Chern-Simons term,
. This term
induces neutrino-photon interactions at finite baryon density via the coupling
of the Z-boson to neutrinos. These interactions may be detectable in various
laboratory and astrophysical arenas. The new interactions may account for the
MiniBooNE excess. They also produce a competitive contribution to neutron star
cooling at temperatures >10^9 K. These processes and related axion--photon
interactions at finite baryon density appear to be relevant in many
astrophysical regimes.Comment: 4 pages, 2 figures; references adde
Very Extended and at low levels, Gravity and Supergravity
We define a level for a large class of Lorentzian Kac-Moody algebras. Using
this we find the representation content of very extended and
(i.e. ) at low levels in terms of and
representations respectively. The results are consistent with the conjectured
very extended and symmetries of gravity and maximal supergravity
theories given respectively in hep-th/0104081 and hep-th/0107209. We explain
how these results provided further evidence for these conjectures.Comment: 16 pages, plain tex (equation 3.3 modified and one reference
expanded
- …