15 research outputs found

    Ammonia in a time of COVID-19. A submission of evidence to Defra/AQEG

    Get PDF
    A submission to the Air Quality Expert Group (AQEG), an expert committee of the Department for Environment, Food and Rural Affairs (Defra) • Ammonia gas (NH3) is a priority pollutant both as a precursor to particulate matter and for ecosystem impacts. • Three scenarios for UK emission reductions during COVID-19 in emission sectors, where activity is likely reduced ,have been assessed. • Total UK emissions of NH3 are likely to have decreased slightly (~2%), which is within the uncertainty and meteorological variability of the UK atmosphere. • Urban background and urban on road and roadside emissions of NH3 are likely to have decreased, by as much as 30% and 90% respectively compared with usual emissions before COVID-19. • Unratified data from three of the five UK automatic NH3 analysers (Auchencorth Moss, Chilbolton Observatory, and Manchester OSCA Observatory) show typical springtime NH3 concentrations across the UK. • Data from the non-automatic National Ammonia Monitoring Network will enable analysis at UK level in the months ahead. This includes roadside data from London Cromwell Rd. • Evidence gaps & future approaches are outlined. Future analysis of the Defra UKEAP rural networks proposed. • The key measurement gap is urban roadside NH3 (and PM ammonium) as there is only one long-term site in the UK measuring roadside NH3 concentrations. It is suggested that a roadside network of samplers and/or analysers are urgently put in place (perhaps aligned with the UK Urban NO2 Network; UUNN) to monitor NH3 at roadsides during and post COVID-19 lock down where possible

    L-5-methyltetrahydrofolate supplementation increases blood folate concentrations to a greater extent than folic acid supplementation in Malaysian women

    Get PDF
    Background: Folic acid fortification of grains is mandated in many countries to prevent neural tube defects. Concerns regarding excessive intakes of folic acid have been raised. A synthetic analog of the circulating form of folate, l-5-methyltetrahydrofolate (l-5-MTHF), may be a potential alternative. Objective: The objective of this study was to determine the effects of folic acid or l-5-MTHF supplementation on blood folate concentrations, methyl nutrient metabolites, and DNA methylation in women living in Malaysia, where there is no mandatory fortification policy. Methods: In a 12-wk, randomized, placebo-controlled intervention trial, healthy Malaysian women (n = 142, aged 20–45 y) were randomly assigned to receive 1 of the following supplements daily: 1 mg (2.27 μmol) folic acid, 1.13 mg (2.27 μmol) l-5-MTHF, or a placebo. The primary outcomes were plasma and RBC folate and vitamin B-12 concentrations. Secondary outcomes included plasma total homocysteine, total cysteine, methionine, betaine, and choline concentrations and monocyte long interspersed nuclear element-1 (LINE-1) methylation. Results: The folic acid and l-5-MTHF groups had higher (P < 0.001) RBC folate (mean ± SD: 1498 ± 580 and 1951 ± 496 nmol/L, respectively) and plasma folate [median (25th, 75th percentiles): 40.1 nmol/L (24.9, 52.7 nmol/L) and 52.0 nmol/L (42.7, 73.1 nmol/L), respectively] concentrations compared with RBC folate (958 ± 345 nmol/L) and plasma folate [12.6 nmol/L (8.80, 17.0 nmol/L)] concentrations in the placebo group at 12 wk. The l-5-MTHF group had higher RBC folate (1951 ± 496 nmol/L; P = 0.003) and plasma folate [52.0 nmol/L (42.7, 73.1 nmol/L); P = 0.023] at 12 wk than did the folic acid group [RBC folate, 1498 ± 580 nmol/L; plasma folate, 40.1 nmol/L (24.9, 52.7 nmol/L)]. The folic acid and l-5-MTHF groups had 17% and 15%, respectively, lower (P < 0.001) plasma total homocysteine concentrations than did the placebo group at 12 wk; there were no differences between the folic acid and l-5-MTHF groups. No differences in plasma vitamin B-12, total cysteine, methionine, betaine, and choline and monocyte LINE-1 methylation were observed. Conclusion: These findings suggest differential effects of l-5-MTHF compared with folic acid supplementation on blood folate concentrations but no differences on plasma total homocysteine lowering in Malaysian women. This trial was registered at clinicaltrials.gov as NCT01584050

    Assessing the bias of molybdenum catalytic conversion in the measurement of NO2 in rural air quality networks

    Get PDF
    The measurement method of NO2 with continuous analysers is specified for EU Ambient Air Quality Directive compliance reporting, which provides a consistent methodology and concurrent NO measurements (85/203/EEC-NO2). While the established method of measurement of NO2, following conversion of NO2 to NO using a molybdenum-conversion process, has known interference uncertainties (due to conversion of other oxidised nitrogen (NOy) chemicals, the consistency and traceability of compliance measurement is important. This study compared three continuous NO2 analyser instruments: a Thermo-NOx molybdenum convertor chemiluminescence analyser (Model 42C, ThermoFisher Scientific Inc., MA, USA), a photolytic chemiluminescence analyser (T200UP, Teledyne Technologies Inc., San Diego, USA) and a Cavity Attenuated Phase Shift (CAPS) analyser (T500U, Teledyne Technologies Inc., CA, USA). The instruments were run for over a year at the Auchencorth Moss long-term peatland monitoring site (Southeast Scotland) which is a low NOx atmosphere away from sources. NOy and NHx chemicals were also measured concurrently. This study concludes that there is a strong artefact in molybdenum catalyst chemiluminescent instruments as a result of unselective catalysis of airborne NOy compounds that causes an overestimate of NO2 measured in the atmosphere. The observed artefact in concentration measurements is likely to be observed at the entire UK scale as almost the entirety of the rural air network relies on molybdenum catalyst instruments. We therefore recommend that molybdenum catalyst instruments should be phased out and replaced in air quality monitoring networks with molecule specific (spectroscopy) instrumentation (equivalent in cost, such as those described in this study) that do not suffer from the same measurement artefacts

    Anemia and Micronutrient Status of Women of Childbearing Age and Children 6–59 Months in the Democratic Republic of the Congo

    No full text
    Little is known about the micronutrient status of women and children in the Democratic Republic of the Congo, which is critical for the design of effective nutrition interventions. We recruited 744 mother-child pairs from South Kivu (SK) and Kongo Central (KC). We determined hemoglobin (Hb), serum zinc, vitamin B12, folate, ferritin, soluble transferrin receptor (sTfR), retinol binding protein (RBP), C-reactive protein, and α-1 acid glycoprotein concentrations. Anemia prevalence was determined using Hb adjusted for altitude alone and Hb adjusted for both altitude and ethnicity. Anemia prevalence was lower after Hb adjustment for altitude and ethnicity, compared to only altitude, among women (6% vs. 17% in SK; 10% vs. 32% in KC), children 6–23 months (26% vs. 59% in SK; 25% vs. 42% in KC), and children 24–59 months (14% vs. 35% in SK; 23% vs. 44% in KC), respectively. Iron deficiency was seemingly higher with sTfR as compared to inflammation-adjusted ferritin among women (18% vs. 4% in SK; 21% vs. 5% in KC), children 6–23 months (51% vs. 14% in SK; 74% vs. 10% in KC), and children 24–59 months (23% vs. 4% in SK; 58% vs. 1% in KC). Regardless of indicator, iron deficiency anemia (IDA) never exceeded 3% in women. In children, IDA reached almost 20% when sTfR was used but was only 10% with ferritin. Folate, B12, and vitamin A (RBP) deficiencies were all very low (&lt;5%); RBP was 10% in children. The prevalence of anemia was unexpectedly low. Inflammation-adjusted zinc deficiency was high among women (52% in SK; 58% in KC), children 6–23 months (23% in SK; 20% in KC), and children 24–59 months (25% in SK; 27% in KC). The rate of biochemical zinc deficiency among Congolese women and children requires attention

    Defra UKEAP (UK Eutrophying and Acidifying Atmospheric Pollutants) 2019 dataset: Atmospheric mercury (hourly time resolution)

    No full text
    There are over 1500 sites across the UK that monitor air quality. They are organised into networks that gather a particular kind of information, using a particular method. There are two major types - automatic and non-automatic networks. The Monitoring Networks section provides further network information. Download data from the networks using the Data Selector Tool or download raw automatic data using the preformatted files link

    Defra UKEAP (UK Eutrophying and Acidifying Atmospheric Pollutants) 2020 dataset: Atmospheric speciated mercury at EMEP (European Monitoring and Evaluation Programme) Supersite Auchencorth Moss.

    No full text
    There are over 1500 sites across the UK that monitor air quality. They are organised into networks that gather a particular kind of information, using a particular method. There are two major types - automatic and non-automatic networks. The Monitoring Networks section provides further network information. Download data from the networks using the Data Selector Tool or download raw automatic data using the preformatted files link

    Defra UKEAP (UK Eutrophying and Acidifying Atmospheric Pollutants) 2021 dataset: Atmospheric speciated mercury at EMEP (European Monitoring and Evaluation Programme) Supersite Auchencorth Moss.

    No full text
    There are over 1500 sites across the UK that monitor air quality. They are organised into networks that gather a particular kind of information, using a particular method. There are two major types - automatic and non-automatic networks. The Monitoring Networks section provides further network information. Download data from the networks using the Data Selector Tool or download raw automatic data using the preformatted files link

    Anemia and micronutrient status of women of childbearing age and children 6–59 months in the Democratic Republic of the Congo

    No full text
    PRIFPRI3; ISI; CRP4HarvestPlus; A4NHCGIAR Research Program on Agriculture for Nutrition and Health (A4NH

    Integrated Carbon Observation System (ICOS), Ecosystem Thematic Centre (ETC) Level 2 spatially aggregated meteorological variables, Auchencorth Moss. 2022.

    No full text
    Half-hourly meteorological variables with values aggregated spatially (e.g. one single soil temperature value per layer) calculated by the ICOS ETC starting from the single sensor half-hourly measurements

    Integrated Carbon Observation System (ICOS), Ecosystem Thematic Centre (ETC) Level 2 Fluxes, Auchencorth Moss. 2022

    No full text
    Half-hourly eddy covariance fluxes, all the quality tests results, storage fluxes and footprint information calculated by the ICOS ETC starting from the raw dat
    corecore