3,729 research outputs found

    Vector modulation instability induced by vacuum fluctuations in highly birefringent fibers in the anomalous dispersion regime

    Full text link
    We report a detailed experimental study of vector modulation instability in highly birefringent optical fibers in the anomalous dispersion regime. We prove that the observed instability is mainly induced by vacuum fluctuations. The detuning of the spectral peaks agrees with linear perturbation analysis. The exact shape of the spectrum is well reproduced by numerical integration of stochastic nonlinear Schrodinger equations describing quantum propagation.Comment: 11 pages, 4 figures, to be published in Optics Letter

    Boundary String Field Theory of the DDbar System

    Full text link
    We develop the boundary string field theory approach to tachyon condensation on the DDbar system. Particular attention is paid to the gauge fields, which combine with the tachyons in a natural way. We derive the RR-couplings of the system and express the result in terms of Quillen's superconnection. The result is related to an index theorem, and is thus shown to be exact.Comment: 38 pages, harvmac. v2: added reference

    Dual Descriptions of SO(10) SUSY Gauge Theories with Arbitrary Numbers of Spinors and Vectors

    Full text link
    We examine the low energy structure of N=1 supersymmetric SO(10) gauge theory with matter chiral superfields in N_Q spinor and N_f vector representations. We construct a dual to this model based upon an SU(N_f+2N_Q-7) x Sp(2N_Q-2) gauge group without utilizing deconfinement methods. This product theory generalizes all previously known Pouliot-type duals to SO(N_c) models with spinor and vector matter. It also yields large numbers of new dual pairs along various flat directions. The dual description of the SO(10) theory satisfies multiple consistency checks including an intricate renormalization group flow analysis which links it with Seiberg's duality transformations. We discuss its implications for building grand unified theories that contain all Standard Model fields as composite degrees of freedom.Comment: 36 pages, harvmac and tables macros, 1 figur

    NADPH Oxidase 5 Is a Pro‐Contractile Nox Isoform and a Point of Cross‐Talk for Calcium and Redox Signaling‐Implications in Vascular Function

    Get PDF
    Background NADPH Oxidase 5 (Nox5) is a calcium‐sensitive superoxide‐generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro‐contractile signaling and vascular function. Methods and Results Transgenic mice expressing human Nox5 in a vascular smooth muscle cell–specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5‐expressing mice, agonist‐induced vasoconstriction was exaggerated and endothelium‐dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N‐acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro‐contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild‐type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Conclusions Nox5 is a pro‐contractile Nox isoform important in redox‐sensitive contraction. This involves calcium‐calmodulin and endoplasmic reticulum–regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro‐contractile molecular machinery in vascular smooth muscle cells

    Digital technology and governance in transition: The case of the British Library

    Get PDF
    Comment on the organizational consequences of the new information and communications technologies (ICTs) is pervaded by a powerful imagery of disaggregation and a tendency for ?virtual? forms of production to be seen as synonymous with the ?end? of bureaucracy. This paper questions the underlying assumptions of the ?virtual organization?, highlighting the historically enduring, diversified character of the bureaucratic form. The paper then presents case study findings on the web-based access to information resources now being provided by the British Library (BL). The case study evidence produces two main findings. First, radically decentralised virtual forms of service delivery are heavily dependent on new forms of capacity-building and information aggregation. Second, digital technology is embedded in an inherently contested and contradictory context of institutional change. Current developments in the management and control of digital rights are consistent with the commodification of the public sphere. However, the evidence also suggests that scholarly access to information resources is being significantly influenced by the ?information society? objectives of the BL and other institutional players within the network of UK research libraries

    NADPH oxidase 5 is a pro‐contractile Nox isoform and a point of cross‐talk for calcium and redox signaling‐implications in vascular function

    Get PDF
    Background: NADPH Oxidase 5 (Nox5) is a calcium‐sensitive superoxide‐generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro‐contractile signaling and vascular function. Methods and Results: Transgenic mice expressing human Nox5 in a vascular smooth muscle cell–specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5‐expressing mice, agonist‐induced vasoconstriction was exaggerated and endothelium‐dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N‐acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro‐contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild‐type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Conclusions: Nox5 is a pro‐contractile Nox isoform important in redox‐sensitive contraction. This involves calcium‐calmodulin and endoplasmic reticulum–regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro‐contractile molecular machinery in vascular smooth muscle cells

    Space-based research in fundamental physics and quantum technologies

    Full text link
    Space-based experiments today can uniquely address important questions related to the fundamental laws of Nature. In particular, high-accuracy physics experiments in space can test relativistic gravity and probe the physics beyond the Standard Model; they can perform direct detection of gravitational waves and are naturally suited for precision investigations in cosmology and astroparticle physics. In addition, atomic physics has recently shown substantial progress in the development of optical clocks and atom interferometers. If placed in space, these instruments could turn into powerful high-resolution quantum sensors greatly benefiting fundamental physics. We discuss the current status of space-based research in fundamental physics, its discovery potential, and its importance for modern science. We offer a set of recommendations to be considered by the upcoming National Academy of Sciences' Decadal Survey in Astronomy and Astrophysics. In our opinion, the Decadal Survey should include space-based research in fundamental physics as one of its focus areas. We recommend establishing an Astronomy and Astrophysics Advisory Committee's interagency ``Fundamental Physics Task Force'' to assess the status of both ground- and space-based efforts in the field, to identify the most important objectives, and to suggest the best ways to organize the work of several federal agencies involved. We also recommend establishing a new NASA-led interagency program in fundamental physics that will consolidate new technologies, prepare key instruments for future space missions, and build a strong scientific and engineering community. Our goal is to expand NASA's science objectives in space by including ``laboratory research in fundamental physics'' as an element in agency's ongoing space research efforts.Comment: a white paper, revtex, 27 pages, updated bibliograph
    • 

    corecore