22 research outputs found

    Error reduction method for singularity point detection using Shack–Hartmann wavefront sensor

    Get PDF
    AbstractA new framework is proposed for realizing high-spatial-resolution detection of singularity points in optical vortex beams using a Shack–Hartmann wavefront sensor (SHWS). The method uses a Shack–Hartmann wavefront sensor (SHWS) to record a Hartmanngram. A map of evaluation values related to phase slope is then calculated from the Hartmanngram. We first determined the singularity's position precisely by calculating the centroid of the circulation of 3×3 crosspoints. After that, we analyzed the error distribution of it, and proposed hybrid centroiding framework for reducing its error. Optical experiments were carried out to verify the method. Good linearity was showed in detecting positions of the singularity points, and it was indicated that the accuracy of detection the position of OV was improved. The average root mean square (RMS) error over various measurements was better than correlation matching method, which we proposed before. The method not only shows higher accuracy, but also consumes much less time than our former work

    Topological Charge Detection Using Generalized Contour-Sum Method from Distorted Donut-Shaped Optical Vortex Beams: Experimental Comparison of Closed Path Determination Methods

    No full text
    A generalized contour-sum method has been proposed to measure the topological charge (TC) of an optical vortex (OV) beam using a Shack–Hartmann wavefront sensor (SH-WFS). Moreover, a recent study extended it to be workable for measuring an aberrated OV beam. However, when the OV beam suffers from severe distortion, the closed path for circulation calculation becomes crucial. In this paper, we evaluate the performance of five closed path determination methods, including watershed transformation, maximum average-intensity circle extraction, a combination of watershed transformation and maximum average-intensity circle extraction, and perfectly round circles assignation. In the experiments, we used a phase-only spatial light modulator to generate OV beams and aberrations, while an SH-WFS was used to measure the intensity profile and phase slopes. The results show that when determining the TC values of distorted donut-shaped OV beams, the watershed-transformed maximum average-intensity circle method performed the best, and the maximum average-intensity circle method and the watershed transformation method came second and third, while the worst was the perfect circles assignation method. The discussions that explain our experimental results are also given

    Implicit Memory in Monkeys: Development of a Delay Eyeblink Conditioning System with Parallel Electromyographic and High-Speed Video Measurements

    No full text
    <div><p>Delay eyeblink conditioning, a cerebellum-dependent learning paradigm, has been applied to various mammalian species but not yet to monkeys. We therefore developed an accurate measuring system that we believe is the first system suitable for delay eyeblink conditioning in a monkey species (<i>Macaca mulatta</i>). Monkey eyeblinking was simultaneously monitored by orbicularis oculi electromyographic (OO-EMG) measurements and a high-speed camera-based tracking system built around a 1-kHz CMOS image sensor. A 1-kHz tone was the conditioned stimulus (CS), while an air puff (0.02 MPa) was the unconditioned stimulus. EMG analysis showed that the monkeys exhibited a conditioned response (CR) incidence of more than 60% of trials during the 5-day acquisition phase and an extinguished CR during the 2-day extinction phase. The camera system yielded similar results. Hence, we conclude that both methods are effective in evaluating monkey eyeblink conditioning. This system incorporating two different measuring principles enabled us to elucidate the relationship between the actual presence of eyelid closure and OO-EMG activity. An interesting finding permitted by the new system was that the monkeys frequently exhibited obvious CRs even when they produced visible facial signs of drowsiness or microsleep. Indeed, the probability of observing a CR in a given trial was not influenced by whether the monkeys closed their eyelids just before CS onset, suggesting that this memory could be expressed independently of wakefulness. This work presents a novel system for cognitive assessment in monkeys that will be useful for elucidating the neural mechanisms of implicit learning in nonhuman primates.</p></div
    corecore