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a b s t r a c t

A new framework is proposed for realizing high-spatial-resolution detection of singularity points in
optical vortex beams using a Shack–Hartmann wavefront sensor (SHWS). The method uses a Shack–
Hartmann wavefront sensor (SHWS) to record a Hartmanngram. A map of evaluation values related to
phase slope is then calculated from the Hartmanngram. We first determined the singularity's position
precisely by calculating the centroid of the circulation of 3�3 crosspoints. After that, we analyzed the
error distribution of it, and proposed hybrid centroiding framework for reducing its error. Optical
experiments were carried out to verify the method. Good linearity was showed in detecting positions of
the singularity points, and it was indicated that the accuracy of detection the position of OV was
improved. The average root mean square (RMS) error over various measurements was better than
correlation matching method, which we proposed before. The method not only shows higher accuracy,
but also consumes much less time than our former work.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Optical vortex (OV) beams [1–4] which are special optical fields
having spiral phase structures around zero-amplitude points have
found many applications, such as information encoding for quan-
tum commnuications [5], trapping and rotating of micro-particles
[6], stimulated emission depletion microscopy [7], and biological
kinematic analysis [8]. The points of zero amplitude are typically
lines in three-dimensional space and their intersections with a
plane are typically isolated points [9]. The phase has spiral
structures with continuously changing from 0 to 2nπ (n is an
integer and known as topological charge) around such points. The
study of behaviors of OV has grown up to a sub-field of optical
research, now known as singular optics.

One of the problems in singular optics is how to measure the
spiral phase structures. This problem was addressed by interfero-
metry [10,11] over the years. The principal advantage of inter-
ferometry is that its spatial resolution is high. However, it requires
relatively complicated optics, and when vibrations exist, the
measurement accuracy decreases significantly. Recently, some

methods employing Shack–Hartmann wavefront sensors (SHWSs)
[12,13] have been proposed to overcome these issues. A SHWS
simply consists of a lenslet array and an image sensor at its back-
focal plane, and measure directly the phase slope of incoming
optical wave at each lenslet position. Therefore, a map of phase
slope distribution can be easily obtained.

The fundamental basis of OV detection using SHWS is that the
closed-line integral/contour sum of phase-slope-vector measured is
non-zero if there is a net topological charge of a phase singularity
within the area enclosed by the closed-line path. Because the
smallest contour is the path connecting the neighboring lenslets,
therefore, position determined with the contour-sum method has
uncertainity corresponding to spacing of the lenslet. Growing out of
the contour sum method, some new solutions have been proposed
to achieve more robust results against noise [9,14,15]. An alternative
approach, where singularities are determined from phase slope
vector data based on the branch point potential method [16,17], has
been introduced. We also proposed a correlation matching method
for improving the spatial accuracy of position measurement [18].
This method requires a set of references obtained by numerical
calculation. It requires relatively long computing time because the
matching operation must be done between the circulation obtained
from real Hartmanngram and the references.

In this paper, we propose a hybrid centroiding framework
which detects OV with the aid of two centroiding methods, which
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identify the center of gravity. In the following, we propose a 9-
Points Centroiding method for measuring OV position and analyze
its error distribution in Section 2, and then a hybrid centroiding
framework to reduce the error is presented in Section 3. In Section
4, optical experiments was carried, and good linearity was shown.
Finally, we summarize our work in Section 5.

2. 9PCM (9-Points Centroiding method) and its Numerical
Analysis of Error Distribution

We resolve our new method, the 9PCM (9-Points Centroiding
method) in the rest of this paper, into two stages. A circulation
map that represents phase structure is, firstly, calculated from an
image acquired with an SHWS, which is call Hartmanngram, by
using the conventional contour sum method, by which phase
singularities are roughly determined from the map. After that, the
position of each phase singularity point is determined more
accurately by the hybrid centroiding step.

2.1. Circulation map calculation step to locate an optical vortex with
lens-size precision

Around the singularity point, the phase changes continuously
from 0 to 2nπ. An optical vortex, therefore, can be detected with
the aid of a closed line integral [19],Z
C
∇θd l

!¼ 2πn; ð1Þ

where C is the closed integration contour, ∇θ denotes the gradient
of the phase distribution, which represents a two-dimensional
distribution of phase slope vector, d l

!
is the element of the

contour, and n is an integer that represents the net topological
charge of a phase singularity within the area enclosed by the
contour.

A beam is divided into multiple sub-beams by the lenslet array
of SHWS, when the beam is incident on it. The SHWS acquires an
image, which is called a Hartmanngram, consisting of many bright
spots formed by sub-beams. The position of the bright spot formed
by a sub-beam deviates from the center of the lenslet that creates
that sub-beam, when the wavefront of the sub-beam tilts, and the
amount of movement of the bright spot is proportional to the
tilting angle of the sub-beam. We can calculate the phase slope
vector, therefore, from the positions of the spots. A discrete version

of the phase-slope-vector distribution can be obtained, by calcu-
lating phase slope at each lenslet.

Eq. (1) has to be modified into a discrete version, by which the
equivalent of it from the discrete phase-slope-vector distribution
can be calculated. Such modification is represented in Fig. 1. We
calculate a phase slope vector ðSi; jx ; Si; jy Þ at lenslet (i, j). The dashed
lines in Fig. 1 represent a closed contour, which has a rectangular
shape, and can be formed by connecting the centers of four
neighboring lenslets. The four neighboring lenslets have a com-
mon point, as shown in Fig. 1, which is also the center of the
rectangle contour. This common point is referred to as a crosspoint
(p, q). The closed line integral can be equivalently written as [19],

Cir ðp; qÞ ¼w
2
ðSi;jx þSi;jþ1

x þSi;jþ1
y þSiþ1;jþ1

y �Siþ1;jþ1
x �Siþ1;j

x �Siþ1;j
y �Si;jy Þ;

ð2Þ
where w is the lens size of the lenslet array and Cirðp; qÞ is called
the circulation at crosspoint ðp; qÞ. A circulation map can be
obtained by calculating the circulation at every crosspoint.

Cirðp; qÞ is similar to but not identical to the close-line integral
calculated by Eq. (1), as it is a discrete approximation. Let us
consider the case when no singularity point is present within the
contour area around (p, q) and there is no singularity in the other
areas. When no singularity exists in the area, Cirðp; qÞ approaches
zero. Cirðp; qÞ becomes non-zero in the case when one singularity
exists. Not only that, the circulations at the eight nearest cross-
points to the crosspoint (p, q) tend to have non-zero values.
However, previous studies shows that Cirðp; qÞ is the largest
among such non-zero values [19]. By finding the local maximum
in the circulation map, we can locate the nearest crosspoint to a
singularity point, which can be expressed as:

ðpmax; qmaxÞ ¼maxposðCirðp; qÞÞ; ð3Þ
where maxpos() denotes an operation of searching for a local
maximum and returning its position, and (pmax, qmax) represents
the crosspoint position. At present, the position of the singularity
point has an uncertainty corresponding to the lenslet size. In other
words, the maximum error of the position of the singular point is
half of the lenslet size.

2.2. 9-Points centroiding step to achieve precise location

In the next step, we attempt to determine a more accurate
position of the singularity point. While the singularity point is
specified as being in the contour area of Crosspoint (p, q) in the
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Fig. 1. Concept of circulation. Sx and Sy represents phase slopes in x-axis (horizontal) and y-axis (vertical) directions, and i, j denotes the lenslet index. The solid circles are
the centers of lenslets, and the open circles indicate crosspoints of neighboring 2�2 lenslets. The dashed line indicates a contour connecting the centers of the four
neighboring lenslets. The symbol “�” denotes the position of phase singularity point.
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first step, we choose nine circulations (3�3 crosspoints) around
the crosspoint (p, q). We call the chosen 3�3 crosspoints a
circulation submap. A model for a circulation submap is shown
in Fig. 2, which includes 4�4 lenslets and 3�3 crosspoints. The
solid circles and the open circles indicate the centers and the
crosspoints of the lenslets, respectively. Also, u and v are the
horizontal and vertical axes normalized by the lenslet size,
respectively. The center crosspoint is taken as the origin of the
u–v coordinate system O, and it is assumed that a phase singular-
ity point is present at ðu0; v0Þð�0:5ou0r0:5; �0:5ov0r0:5Þ.
The position of other 8 crosspoints in this coordinate system is
denoted as (k, l), (k, l¼�1, 0, 1). The singularity point is, of course,
the center of the spiral phase distribution and is denoted by a
symbol “�”. The accurate position of OV is calculated using our
new method under these conditions.

In this method, the position of OV ðu9PCM ; v9PCMÞ measured by
calculating centroiding of the 9 crosspoints, which can be
expressed as

u9PCM ¼∑1
k ¼ �1∑

1
l ¼ �1Cðk; lÞk

∑1
k ¼ �1∑

1
l ¼ �1Cðk; lÞ

v9PCM ¼∑1
k ¼ �1∑

1
l ¼ �1Cðk; lÞl

∑1
k ¼ �1∑

1
l ¼ �1Cðk; lÞ

ð4Þ

where Cðk; lÞ ¼ Cirðpmaxþk; qmaxþ lÞ (k, l¼�1, 0, 1), and k, l means
relative locations in this coordinate system.

The position (P, Q) of the singularity, in high precision, can be
expressed as

P ¼ pmaxþu9PCM ;

Q ¼ qmaxþv9PCM : ð4Þ

2.3. Numerical Analysis of Error Distribution for 9PCM

A numerical calculation was made to test the 9-Points Cen-
troiding methods above. An OV, the position of which was set in
advance, is simulated to emit on the SHWS. The circulations for the
crosspoints near the OV can be calculated by the method we
introduced above.

The position of OV was moved in the step of 0.01, individually,
in horizontal and vertical direction in the region: ð�0:5ou0r
0:5; �0:5ov0r0:5Þ, where the circulation for each crosspoint C(k,
l) can be calculated by using Chen's method [19]. The 9PCM (Eq.
(4)) and the 4PCM (Eq. (5)) are used, individually, to measure the
position of the OV in each case. In each location, the error of the
true position and the position calculated respectively by 9PCM and
4PCM, are calculated, which can be written as

Err9PCMðu0; v0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0�u9PCM

u0; v0Þ2þðv0�v9PCMu0; v0Þ2
q

ð5Þ

where u9PCM
u0; v0 and v9PCMu0; v0 mean the position calculated by the 9PCM

in horizontal and vertical direction of OV. The distribution of
Err9PCMðu0; v0Þ are shown in Fig. 4(a). The precise shapes of the
function for error distribution as one dimensional functions of
r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2

p
are shown in Fig. 4(b) for v¼0 (middle line) and for

u¼v (diagonal). It is found that the error distribution showed
symmetrical characteristic. The error was zero when OV just
locates in the center, or the crosspoint. The error tends to be
larger when OV locates farther from the center. When OV locates
in the corner of the distribution, or the center of a lenslet, the error
would tend to be the largest.

3. Hybrid centroiding framework for determination
of vortex position

By the analysis we mentioned in Section 2.3, it is indicated that
the error tends to be very large when OV locates near the center of
a lenslet. It means that 9PCM may not be suitable for calculating
the position of OV in this situation. Fig. 4(a) is similar to Fig. 2
except that the singularity point located near the center of a
lenslet. The 3�3 crosspoints was labeled as O, A, B, C, …, H. Fig. 5
(b) is a circulation distribution as a function of (u, v),where the
9 crosspoints was tagged. It is clear that the circulation of all the
nearest 4 crosspoints: O, A, B, C, which also form the 4 corners of a
lenslet, larger than 2.5. And the other 5 crosspoints that locates far
from the OV have a very small circulation. If we calculate the
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y 

Fig. 2. A model for the circulation submap.
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Fig. 3. (a) Error distribution of 9PCM and (b) one-dimensional functions of error distribution plotted as functions of r¼
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along the diagonal line and middle line,

respectively, as indicated in (a). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article)
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Fig. 4. (a) A model for the circulation submap in the case when singularity point locates near the center of a lenslet. (b) The circulation distribution as a function of (u, v).

0.86 

1.59 

0.92 0.23 0.13 

0.36 0.28 

3.5 0.390.86

1.59

0.92 

0.36 0.28

Compare 

C
om

pare 

0.86

1.59

0.92

3.5 0.39 

0.23 0.13

3.5 0.39

0.23 0.13

0.36 0.28
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and the ones filled by green indicate ωk; l¼0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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location of OV by only the circulation of the nearest 4 crosspoints
in this situation, the error would fall down. We would introduce a
4-Points Centroiding method and combine it to our former frame-
work in the next step.

3.1. 4-Points Centroiding method (4PCM)

We calculate the position of OV ðu4PCM ; v4PCMÞ by the following
equation:

u4PCM ¼∑1
k ¼ �1∑

1
l ¼ �1Cðk; lÞkωk; l

∑1
k ¼ �1∑

1
l ¼ �1Cðk; lÞωk; l

v4PCM ¼∑1
k ¼ �1∑

1
l ¼ �1Cðk; lÞlωk; l

∑1
k ¼ �1∑

1
l ¼ �1Cðk; lÞωk; l

ð6Þ

where ωk; l denotes the weight at Crosspoint Cðk; lÞ, which has
only 2 values: 0 and 1. Four of them equal 1, the others equal 0.
Fig. 3 shows how to determine the value of ωk; l. The 3�3 open
circles denote the circulation submap, and the values above them
show an example of the circulation for the crosspoint, respectively.
Circles filled with white mean that ωk; l has not yet been deter-
mined in this step, the ones filled with red indicate ωk; l¼1, and
the ones filled with green indicate ωk; l¼0. The weight is deter-
mined by the following steps (shown in Fig. 3).

a) ω0; 0¼1, as shown in Fig. 3(a).
b) As in Fig. 3(b), ω�1; 0 and ω1; 0 are determined by comparing of

Cð�1; 0Þ and Cð1; 0Þ.ω�1; 0¼1, ω1; 0¼0 can be concluded if the
former one is bigger, and vice versa. ω�1; 0 and ω1; 0 can be
determined in a similar way.

c) As in Fig. 3(c), the three points, whose weights equal 1 form
three vertexes of a square and the fourth vertex tends to be the
fourth point.

3.2. Hybrid centroiding method (HCM)

A numerical calculation similar to Section 2.3 was made to test the
two centroiding methods above and verify our thought. In each
location, the error of the true position and the position calculated

respectively by 9PCM and 4PCM, are calculated, and the error are
shown in Fig. 6(a) and (b). We can find out that they have different
performance in different regions. The 9PCM shows a low error in most
area except the area near the corner. The 4PCM, in contrast, shows
better performance in the area near the corner. The map combines the
regions where the error is lower in (a) and (b) is shown in (c), and its
method distribution is shown in Fig. 6(d), where the boundaries of the
twomethods are clearly shown. As we have indicated before, the error
in the whole map would fall down if we combine these two methods.

We focus on the criterion in determining which method is better
for different situations, to restrain the error as low as possible. The
boundary, of course, represents where the error by using 9PCM equals
that by using 4PCM. In other words, we have to gain the curve of

uErr9PCMu0; v0 ¼ uErr4PCMu0; v0 ð7Þ

The boundary in Fig. 4(d) can be, approximately, regarded as
four linear equation, which can be can be written as

ju0j ¼ kjv0jþb ð8Þ

Least square fitting was made, and the coefficient was calcu-
lated: k¼1.00, b¼0.67. The criterion for 9PCM can be written as

1 k

1 �k

�1 k

�1 �k

2
6664

3
7775 u0

v0

� �
rb ð9Þ

When used in actual experiment, u0; v0 was replaced by
estimated value û, v̂, and Eq. (9) can be written as

1 k
1
�1
�1

�k

k

�k

2
6664

3
7775 û

v̂

" #
rb ð10Þ

In our method, the 9PCM was, firstly, used to calculate the
accurate location of OV. Eq. (10) was used to determine which

4PCM 

9PCM 

Fig. 6. The error distribution for the location of OV in horizontal direction for the 9PCM (a) and 4PCM (b), which were combined in (c). The distribution that shows lower
error of the 9PCM and 4PCM is shown in (d).
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method to choose, where û, v̂ was represented by u9PCM and v9PCM .
It can be written as

umax ¼
u9PCM ; when Eq: ð10Þ is true
u4PCM ; otherwise

(

vmax ¼
v9PCM ; when Eq: ð10Þ is true
v4PCM ; otherwise

(
ð11Þ

The position (P, Q) of the singularity, in high precision, can be
expressed as

P ¼ pmaxþumax;

Q ¼ qmaxþvmax: ð12Þ

3.3. Numerical Analysis of HCM

To verify the performance of HCM, we calculated the root mean
square (RMS) and found the maximum error for the location of OV
calculated by 9PCM, 4PCM and HCM, which is shown in Fig. 7. It is
shown that the average error of HCM is not obviously reduced,
comparing with 9PCM, as the region where 9PCM was replaced by
4PCM was limited in the corner of the distribution map. However,
the maximum error of HCM was significantly lower than 9PCM,
which showed that the error could be restrained in a low level.

A light beam was simulated to be transformed into an optical
vortex beam, and emit on the SHWS. The signal of light beam was
normalized, and added by a set of Gaussian white noise. The mean
value of the noise was set 0, and the variance was set 0, 0.1, 0.2,
0.3, 0.4, 0.5. Through Fourier transform, the intensity on the CCD of
SHWS can be calculated, and the phase slope data can be obtained.
We calculated the RMS and found the maximum error for the
location of OV calculated by 9PCM, 4PCM and HCM, as shown in
Fig. 8. We could find out that the RMS of HCM was lower than the

other two methods however big the Gaussian white noise is, and
the peak of error of HCM retained low comparing with 9PCM.
Overall, HCM showed robust performance.

4. Experiment

In order to test our method, we built an experimental setup. A
schematic of the setup is shown in Fig. 9. The LCOS-SLM used in
our experiments was a phase-only modulation device (Hama-
matsu Photonics, X10486-1) [20], which had 792�600 pixels with
pixel sizes of 20 μm� 20 μm. The SHWS consisted of a lenslet array
of pitch size 280 μm and a high-speed intelligent vision sensor
(Hamamatsu Photonics, H327) that had 512�512 pixels with pixel
sizes of 20 μm [21].

We confirmed the accuracy of detected positions by measuring
the displacement of a singularity point with moving the location of
the spiral phase pattern displayed on the LCOS-SLM. With steps of
1 pixel (20 μm) in the LCOS-SLM plane, we made the movements
along the horizontal direction. One pixel-length of the LCOS-SLM
corresponded to 0.1142 in the u–v coordinate system at the SHWS
plane, according to the parameters of our experimental system.
We repeated experiments at different vertical positions on the
LCOS-SLM and for different topological charges, and results are
shown in Figs. 10–12. For simplicity, all of the measurements
began with the center of the spiral phase pattern displayed at a
pre-determined position near the center of the LCOS-SLM, and the
pre-determined position was regarded as an initial position (0, 0),
as shown in Figs. 10–12.

Fig. 10 shows an example of measured positions of horizontal
component of singularity point versus the horizontal displace-
ments of spiral phase pattern displayed on LCOS-SLM for topolo-
gical charge n¼1 by using the 9PCM, 4PCM, and HCM, where
vertical positions (vp) was displaced 4 pixels from the initial
vertical position. In the area near the center of lenslet (19.5 and
20.5), 4PCM showed lower error than 9PCM, and good linearity of
HCM was shown after combining the two centroiding method.

We obtained the results at vertical positions (vp) �5, �3, 0,
2 and 4 pixels displaced from the initial vertical position for
different topological charges and are shown in Fig. 11(a) n¼1, (b)
n¼2, and (c) n¼3. The averages of the measurements are shown
in Fig. 11(d). The two vertical dashed lines in Fig. 11(a) indicate the
range that corresponds to a displacement equal to the lens size of
the lenslet array, and the diagonal line from bottom-left to top-
right is a theoretical prediction. The results show good linearity
between the measured position of the singularity point and the
displacement applied by the LCOS-SLM. The slope of the line

0
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0.03
0.035

RMS Max Error
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4PCM

HCM

Fig. 7. The RMS and maximum error of 9PCM, 4PCM and MCM.
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fitting those measured horizontal positions is 0.1127, which agrees
well with the theoretically predicted value 0.1142. The average
root mean square (RMS) error over various measurements was
approximately 0.044, in unit of normalized lenslet size.

We measured the vertical components when the vortex point
on the LCOS-SLM was displaced along the horizontal direction for
different topological charges and are shown in Fig. 12(a) n¼1, (b)
n¼2, and (c) n¼3. Fig. 12(d) plots the vertical component of the
measured position versus the displacement in the vertical
direction.

The RMS error of the horizontal and vertical components is
0.044 and 0.052, and its averaged value over the measurements for
the horizontal and vertical components is 0.048. It means that the
precision is approximately one-twentieth of the lens size of the
lenslet array. The RMS of 9PCM, 4PCM, HCM, CMM for the
topological charge n¼1, 2, 3 is shown in Table 1. It is indicated
that HCM showed advantage over 9PCM and 4PCM, which linked
to the results of the numerical simulations that were presented.
Also, the performance of HCM is not worse than that of CMM [18],
the method we proposed before.

There are several different sources of uncertainty and error in
the optical system, containing finite pixelization, cross-talk
between lenslets, out-of-range conditions, background light, spot
motion during the exposure time, light incident during the CCD
readout, and several other effects. One of the major factors that
affect the detection accuracy is the zero-amplitude characteristic
of the singularity point in an optical vortex beam. As shown in
Fig. 13, a dark area around the point could be observed in the
Hartmanngram even though it was recorded at the conjugate
plane of the LCOS-SLM where the spiral phase pattern was
displayed. Within this area, the spots of the Hartmanngram may
be deformed, and in the worst case, one or more spots will
disappear. Therefore, as shown in Figs. 11 and 12, the measure-
ment error may vary according to the positional relationship
between a vortex point and the lenslets. Also, the artifact noise
caused by 2π-phase-wrapping lines in the pattern displayed on
LCOS-SLM might increase the measurement error, especially when
the detected vortex was of large topological charge and near to the
contour of integration. The method we proposed, however, has
shown high accuracy and robust performance.

The implementation time for HCM is less than 1 ms in a
common personal computer (CPU: Intel Core2 2.0 GHz; RAM:
1 GB). It is much faster than that of CMM, the average time of
which is more than 70 ms.

5. Summary

In summary, a new hybrid centroiding framework has been
proposed to realize high-spatial-resolution detection of the posi-
tions of singularity points in optical vortex beam using a Shack–
Hartmann wavefront sensor (SHWS). We first determined the
singularity's position precisely by 9PCM, which calculated the
centroid of the circulation of 3�3 crosspoints. After that, we
analyzed the error distribution of 9PCM, and proposed hybrid
centroiding framework, which combines two centroiding meth-
ods. Numerical calculation showed that the new framework
improved the accuracy of detection the position of OV. Good
linearity was also verified between the measured position shifts
of the singularity point and the displacements of the spiral phase
position. The average root mean square (RMS) error over various
measurements was better than CMM, the method we proposed

LCOS-SLM

CMOS Camera

L2 Spatial FilterL3

L4 

SHWS 

BS2

BS1Laser P Objec t ApertureL1 

Fig. 9. Optical setup. P: Polarizer; BS1, BS2: Beam splitter; L1, L2, L3, L4: Lens; SLM: Spatial light modulator; SHWS: Shack–Hartmann wavefront sensor.
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Fig. 11. Plots of measured positions of horizontal component of singularity points versus the horizontal displacements of spiral phase pattern displayed on LCOS-SLM for
topological charge (a) n¼1, (b) n¼2, and (c) n¼3, and plot of averages of horizontal component measured versus the horizontal displacements assigned (d).
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before. The method showed higher accuracy and the implementation
time was significantly reduced comparing with our former work.
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Table 1
The RMS of 9PCM, 4PCM, HCM, CMM for the topological charge n¼1, 2 and 3.

9PCM 4PCM HCM CMM

n¼1 0.071 0.082 0.061 0.058
n¼2 0.058 0.065 0.047 0.042
n¼3 0.044 0.054 0.036 0.064
Average 0.058 0.067 0.048 0.055

Fig. 13. An example of Hartmanngram.
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