265 research outputs found

    Diffusion behavior of delta-doped Si in InAlAs/InP heterostructures

    Get PDF
    Diffusion behavior of delta-doped Si in InAlAs and InP was studied by using secondary ion mass spectroscopy. A significant broadening of the profile due to postgrowth annealing was observed in In0.52Al0.48As. In contrast, the depth profile of delta-doped Si in InP was scarcely changed by annealing. This indicates that the diffusion coefficient of delta-doped Si in InP is much smaller than that in In0.52Al0.48As. Suppression of Si diffusion by using a delta-doped InP layer as the carrier supply layer (CSL) improves the thermal stability of the InP-HEMT structures

    A framework of eco-design support

    Full text link
    H. Kobayashi, A. Hongu, K. Haruki, S. Doi. A framework of eco-design support. Proceedings First International Symposium on Environmentally Conscious Design and Inverse Manufacturing (EcoDesign ’99), 1999, 680-684. https://doi.org/10.1109/ECODIM.1999.747697

    『漢書』の構造と董仲舒

    Get PDF
    早大学位記番号:新8222早稲田大

    Pseudogap Phase Boundary in Overdoped Bi_2Sr_2CaCu_2O_8 Studied by Measuring Out-of-plane Resistivity under the Magnetic Fields

    Full text link
    The characteristic pseudogap temperature T* in Bi2Sr2CaCu2O8 system has been systematically evaluated as a function of doping, especially focusing on its overdoped region, by measuring the out-of-plane resistivity under the magnetic fields. Overdoped samples have been prepared by annealing TSFZ-grown Bi2Sr2CaCu2O8 single crystals under the high oxygen pressures (990 kgf/cm2). At a zero field, the out-of-plane resistivity showed a metallic behavior down to Tc (= 62 K), while under the magnetic fields of over 3 T,it showed typical upturn behavior from around 65 K upon decreasing temperature. This result suggests that the pseudogap and superconductivity are different phenomena.Comment: 2 pages, 2 figures. Final version accepted for the Proceedings of the M2S-IX Conference (Tokyo, September 2009

    Modulation of porcine intestinal epitheliocytes immunetranscriptome response by Lactobacillus jensenii TL2937

    Get PDF
    In order to evaluate probiotic strains applicable for the beneficial immunomodulation of the porcine gut (immunobiotics), we previously developed a porcine intestinal epitheliocyte cell line (PIE cells). Here, transcriptomic studies using PIE cells were performed considering that this information would be valuable for understanding the mechanisms involved in the protective activity of the immunobiotic strain Lactobacillus jensenii TL2937 against intestinal inflammatory damage in pigs. In addition, those studies would provide criteria for selecting biomarkers for the screening of new immunobiotic strains. We performed microarray analysis to investigate the transcriptomic response of PIE cells to the challenge with heat-stable Enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs) and, the changes induced by L. jensenii TL2937 in that response. The approach allowed us to obtain a global overview of the immune genes involved in the response of PIE cells to heat-stable ETEC PAMPs. We observed that L. jensenii TL2937 differently modulated gene expression in ETEC PAMPs-challenged PIE cells. Microarray and RT-PCR analysis indicated that the most remarkable changes in PIE cells transcriptomic profile after heat-stable ETEC PAMPs challenge were observed in chemokines, adhesion molecules, complement and coagulation cascades factors. In addition, an anti-inflammatory effect triggered by TL2937 strain in PIE cells was clearly demonstrated. The decrease in the expression of chemokines (CCL8, CXCL5, CXCL9, CXCL10, and CXCL11), complement (C1R, C1S, C3, and CFB), and coagulation factors (F3) by L. jensenii TL2937 supports our previous reports on the immunoregulatory effect of this strain. These results provided clues for the better understanding of the mechanism underlying host-immunobiotic interaction in the porcine host. The comprehensive transcriptomic profiles of PIE cells provided by our analyses successfully identified a group of genes, which could be used as prospective biomarkers for the screening and evaluation of new anti-inflammatory immunobiotics for the prevention of inflammatory intestinal disorders in pigs.Fil: Kobayashi, Hisakazu. Tohoku University; JapónFil: Albarracín, Leonardo Miguel. Tohoku University; Japón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Sato, Nana. Tohoku University; JapónFil: Kanmani, Paulraj. Tohoku University; JapónFil: Kober, Humayun A.K.M.. Tohoku University; Japón. Chittagong Veterinary and Animal Sciences University. Department of Dairy and Poultry Science; BangladeshFil: Ikeda-Ohtsubo, Wakako. Tohoku University; JapónFil: Suda, Yoshihito. Miyagi University; JapónFil: Nochi, Tomonori. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Makino, Seiya. Meiji Co., Ltd. Food Science Research Labs.; JapónFil: Kano, Hiroshi. Meiji Co., Ltd. Food Science Research Labs.; JapónFil: Ohkawara, Sou. Meiji Seika Pharma Co., Ltd. Agricultural and Veterinary Division; JapónFil: Saito, Tadao. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; JapónFil: Kitazawa, Haruki. Tohoku University; Japó

    Transcriptomic Analysis of the Innate Antiviral Immune Response in Porcine Intestinal Epithelial Cells: Influence of Immunobiotic Lactobacilli

    Get PDF
    Lactobacillus rhamnosus CRL1505 and Lactobacillus plantarum CRL1506 are immunobiotic strains able to increase protection against viral intestinal infections as demonstrated in animal models and humans. To gain insight into the host-immunobiotic interaction, the transcriptomic response of porcine intestinal epithelial (PIE) cells to the challenge with viral molecular associated pattern poly(I:C) and the changes in the transcriptomic profile induced by the immunobiotics strains CRL1505 and CRL1506 were investigated in this work. By using microarray technology and reverse transcription PCR, we obtained a global overview of the immune genes involved in the innate antiviral immune response in PIE cells. Stimulation of PIE cells with poly(I:C) significantly increased the expression of IFN-α and IFN-β, several interferon-stimulated genes, cytokines, chemokines, adhesion molecules, and genes involved in prostaglandin biosynthesis. It was also determined that lactobacilli differently modulated immune gene expression in poly(I:C)-challenged PIE cells. Most notable changes were found in antiviral factors (IFN-α, IFN-β, NPLR3, OAS1, OASL, MX2, and RNASEL) and cytokines/chemokines (IL-1β, IL-6, CCL4, CCL5, and CXCL10) that were significantly increased in lactobacilli-treated PIE cells. Immunobiotics reduced the expression of IL-15 and RAE1 genes that mediate poly(I:C) inflammatory damage. In addition, lactobacilli treatments increased the expression PLA2G4A, PTGES, and PTGS2 that are involved in prostaglandin E2 biosynthesis. L. rhamnosus CRL1505 and L. plantarum CRL1506 showed quantitative and qualitative differences in their capacities to modulate the innate antiviral immune response in PIE cells, which would explain the higher capacity of the CRL1505 strain when compared to CRL1506 to protect against viral infection and inflammatory damage in vivo. These results provided valuable information for the deeper understanding of the host-immunobiotic interaction and their effect on antiviral immunity. The comprehensive transcriptomic analyses successfully identified a group of genes (IFN-β, RIG1, RNASEL, MX2, A20, IL27, CXCL5, CCL4, PTGES, and PTGER4), which can be used as prospective biomarkers for the screening of new antiviral immunobiotics in PIE cells and for the development of novel functional food and feeds, which may help to prevent viral infections.Fil: Albarracín, Leonardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentina. Tohoku University; JapónFil: Kobayashi, Hisakazu. Tohoku University; JapónFil: Iida, Hikaru. Tohoku University; JapónFil: Sato, Nana. Tohoku University; JapónFil: Nochi, Tomonori. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Salva, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Alvarez, Gladis Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Kitazawa, Haruki. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentin

    An inverted J-shaped association of serum uric acid with muscle strength among Japanese adult men: a cross-sectional study

    Get PDF
    BACKGROUND: Uric acid (UA) may protect muscle function from oxidative damage due to reactive oxygen species through its powerful antioxidant capacity. However, several studies have demonstrated that hyperuricemia is closely related to systemic inflammation and has oxidant properties effects, both of which may increase the risk of muscle strength loss. The purpose of this study was to examine the association of serum UA concentration with grip strength and leg extension power in adult men. METHODS: This study is a cross-sectional survey in which 630 Japanese male employees aged 30 years and older participated. Five hundred and eighty-six subjects participated in the measurement of grip strength, and 355 subjects participated in the measurement of leg extension power. Blood samples were obtained for serum UA analysis. RESULTS: After adjustment for potential confounders, grip strength differed significantly between participants with and those without hyperuricemia (geometric mean and 95% confidence interval [CI]: 40.3 [39.2–41.3] kg vs. 41.9 [41.3–42.5] kg; P = 0.01). In addition, serum UA levels (quartiles) showed an inverted J-shaped curve with grip strength (mean and 95% CI: Q1, 41.6 [40.6–42.6] kg; Q2, 42.2 [41.2–43.2] kg; Q3, 41.8 [40.8–42.8] kg; Q4, 40.4 [39.3–41.4] kg; P for quadratic trend = 0.05). The results in the leg extension power group were similar to those observed in the grip strength group. CONCLUSION: This population-based cross-sectional study shows for the first time that hyperuricemia is associated with poor muscle strength. Moreover, the results indicate an inverted J-shaped association between serum UA quartiles and muscle strength

    Mechanistic Analysis of Resistance to REIC/Dkk-3-induced Apoptosis in Human Bladder Cancer Cells

    Get PDF
    We have recently shown that a new therapeutic modality using the REIC/Dkk-3 gene (Ad-REIC) is effective against various human cancers, including those of prostate, testis and breast origins. The aim of the present study was to examine the sensitivity of bladder cancers to Ad-REIC and to clarify the molecular mechanisms that determine sensitivity/resistance. We found that 2 human bladder cancer cell lines, T24 and J82, are resistant to Ad-REIC. In T24 and J82 cells, the ER stress response and activation of JNK were observed in a manner similar to that in the sensitive PC3 cells. Translocation of Bax to mitochondria occurred in PC3 cells but not in T24 and J82 cells. Bcl-2 was remarkably overexpressed in T24 and J82 compared with the expression levels in sensitive cell lines. Treatment of T24 and J82 cells with a Bcl-2 inhibitor sensitized the cells to Ad-REIC-induced apoptosis. The results indicate that some human bladder cancers are resistant to apoptosis induced by overexpression of REIC/Dkk-3, which is at least in part due to up-regulation of Bcl-2. These results provide a basis for possible use of Bcl-2 as a marker of sensitive cancers and to try to sensitize resistant cancers to Ad-REIC by down-regulation of Bcl-2.</p

    Evaluation of the immunoregulatory capacities of feed microbial materials in porcine intestinal immune and epithelial cells.

    Get PDF
    The establishment of drug-free feeding systems has been required for secure and healthy lives- tock production. Although functional feed materials containing microorganisms as alternatives to enhance intestinal immunity are expected to be beneficial for reducing diarrhoea caused by pathogens in weaned piglets, the effects of such materials on porcine intestinal cells have not been investigated in detail. Therefore, this work evaluated the immunoregulatory functions of microbial feed materials in porcine intestinal immune and epithelial cells. Porcine immune cells isolated from Peyer?s patches and mesenteric lymph nodes were stimulated with six different feed materials containing microorganisms, and evaluated for lymphocyte mitogenicity and cytokine inductions. In addition, porcine intestinal epithelial cells were stimulated with the materials before treatment with heat-killed enterotoxigenic Escherichia coli (ETEC), and analyzed for the proinflammatory cytokine expressions. The material containing Bifidobacterium thermophilum significantly augmented lymphocytes? mitogenicity and also induced a high expression of IL-2, IL-6 and IFN-γ in immune cells, and inhibited ETEC-induced overexpression of IL-6 and IL-8 via regulation of Toll-like receptor signaling. These results suggest that this feed material stimulates intestinal epithelial and immune cells to exert immunoregulation, suggesting that this feed is expected to contribute to promoting the health of piglets without using antimicrobial feed materials.Fil: Kumagae, Naosuke. Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Products Chemistry. Food and Feed Immunology Group; Japón. Scientific Feed Laboratory Co. Ltd.; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Centro de Referencia para Lactobacilos (i); Argentina. Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Products Chemistry. Food and Feed Immunology Group; JapónFil: Tomosada, Yohsuke. Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Products Chemistry. Food and Feed Immunology Group; JapónFil: Kobayashi, Hisakazu . Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Products Chemistry. Food and Feed Immunology Group; JapónFil: Kanmani, Paulraj. Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Products Chemistry. Food and Feed Immunology Group; Japón. Japan Society for the Promotion of Science; JapónFil: Aso, Hisashi . Tohoku University. Graduate School of Agricultural Science. Cell Biology Laboratory; JapónFil: Sasaki, Takashi . Scientific Feed Laboratory Co. Ltd.; JapónFil: Yoshida, Motohiko . Scientific Feed Laboratory Co. Ltd.; JapónFil: Tanabe, Hiroshi. Scientific Feed Laboratory Co. Ltd.; JapónFil: Shibata, Isao. Scientific Feed Laboratory Co. Ltd.; JapónFil: Saito, Tadao . Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Products Chemistry. Food and Feed Immunology Group; JapónFil: Kitazawa, Haruki. Tohoku University. Graduate School of Agricultural Science. Laboratory of Animal Products Chemistry. Food and Feed Immunology Group; Japó
    corecore