91 research outputs found

    Absence of germline mono-allelic promoter hypermethylation of the CDH1 gene in gastric cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germline mono-allelic promoter hypermethylation of the <it>MLH1 </it>or <it>MSH2 </it>gene in families with hereditary nonpolyposis colorectal cancer has recently been reported. The purpose of this study was to evaluate if germline promoter hypermethylation of the tumor suppressor gene <it>CDH1 </it>(<it>E-cadherin</it>) might cause predisposition to gastric cancer.</p> <p>Methods</p> <p>We prepared two groups of samples, a group of blood samples from 22 patients with familial gastric cancer or early-onset gastric cancer selected from among 39 patients, and a group of non-cancerous gastric tissue samples from 18 patients with sporadic gastric cancer showing loss of CDH1 expression selected from among 159 patients. We then investigated the allele-specific methylation status of the <it>CDH1 </it>promoter by bisulfite sequencing of multiple clones.</p> <p>Results</p> <p>Although there was a difference between the methylation level of the two alleles in some samples, there was no mono-allelic promoter hypermethylation in any of the samples.</p> <p>Conclusion</p> <p>These results suggest that germline mono-allelic hypermethylation of the <it>CDH1 </it>promoter is not a major predisposing factor for gastric cancer.</p

    The CRKL gene encoding an adaptor protein is amplified, overexpressed, and a possible therapeutic target in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic DNA amplification is a genetic factor involved in cancer, and some oncogenes, such as <it>ERBB2</it>, are highly amplified in gastric cancer. We searched for the possible amplification of other genes in gastric cancer.</p> <p>Methods and Results</p> <p>A genome-wide single nucleotide polymorphism microarray analysis was performed using three cell lines of differentiated gastric cancers, and 22 genes (including <it>ERBB2</it>) in five highly amplified chromosome regions (with a copy number of more than 6) were identified. Particular attention was paid to the <it>CRKL</it> gene, the product of which is an adaptor protein containing Src homology 2 and 3 (SH2/SH3) domains. An extremely high <it>CRKL</it> copy number was confirmed in the MKN74 gastric cancer cell line using fluorescence <it>in situ</it> hybridization (FISH), and a high level of CRKL expression was also observed in the cells. The RNA-interference-mediated knockdown of CRKL in MKN74 disclosed the ability of CRKL to upregulate gastric cell proliferation. An immunohistochemical analysis revealed that CRKL protein was overexpressed in 24.4% (88/360) of the primary gastric cancers that were analyzed. The <it>CRKL</it> copy number was also examined in 360 primary gastric cancers using a FISH analysis, and <it>CRKL</it> amplification was found to be associated with CRKL overexpression. Finally, we showed that MKN74 cells with <it>CRKL</it> amplification were responsive to the dual Src/BCR-ABL kinase inhibitor BMS354825, likely via the inhibition of CRKL phosphorylation, and that the proliferation of MKN74 cells was suppressed by treatment with a CRKL-targeting peptide.</p> <p>Conclusion</p> <p>These results suggested that CRKL protein is overexpressed in a subset of gastric cancers and is associated with <it>CRKL</it> amplification in gastric cancer. Furthermore, our results suggested that CRKL protein has the ability to regulate gastric cell proliferation and has the potential to serve as a molecular therapy target for gastric cancer.</p

    Abnormal Expressions of DNA Glycosylase Genes NEIL1, NEIL2, and NEIL3 Are Associated with Somatic Mutation Loads in Human Cancer

    Get PDF
    The effects of abnormalities in the DNA glycosylases NEIL1, NEIL2, and NEIL3 on human cancer have not been fully elucidated. In this paper, we found that the median somatic total mutation loads and the median somatic single nucleotide mutation loads exhibited significant inverse correlations with the median NEIL1 and NEIL2 expression levels and a significant positive correlation with the median NEIL3 expression level using data for 13 cancer types from the Cancer Genome Atlas (TCGA) database. A subset of the cancer types exhibited reduced NEIL1 and NEIL2 expressions and elevated NEIL3 expression, and such abnormal expressions of NEIL1, NEIL2, and NEIL3 were also significantly associated with the mutation loads in cancer. As a mechanism underlying the reduced expression of NEIL1 in cancer, the epigenetic silencing of NEIL1 through promoter hypermethylation was found. Finally, we investigated the reason why an elevated NEIL3 expression level was associated with an increased number of somatic mutations in cancer and found that NEIL3 expression was positively correlated with the expression of APOBEC3B, a potent inducer of mutations, in diverse cancers. These results suggested that the abnormal expressions of NEIL1, NEIL2, and NEIL3 are involved in cancer through their association with the somatic mutation load

    Non-clinical studies for oncology drug development

    Get PDF
    Non-clinical studies are necessary at each stage of the development of oncology drugs. Many experimental cancer models have been developed to investigate carcinogenesis, cancer progression, metastasis, and other aspects in cancer biology and these models turned out to be useful in the efficacy evaluation and the safety prediction of oncology drugs. While the diversity and the degree of engagement in genetic changes in the initiation of cancer cell growth and progression are widely accepted, it has become increasingly clear that the roles of host cells, tissue microenvironment, and the immune system also play important roles in cancer. Therefore, the methods used to develop oncology drugs should continuously be revised based on the advances in our understanding of cancer. In this review, we extensively summarize the effective use of those models, their advantages and disadvantages, ranges to be evaluated and limitations of the models currently used for the development and for the evaluation of oncology drugs

    Internal frontier: The pathophysiology of the small intestine

    No full text
    corecore